Temporal Segment Networks (TSN) in PyTorch

Overview

TSN-Pytorch

We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as other STOA frameworks for various tasks. The lessons we learned in this repo are incorporated into MMAction to make it bettter. We highly recommend you switch to it. This repo will remain here for historical references.

Note: always use git clone --recursive https://github.com/yjxiong/tsn-pytorch to clone this project. Otherwise you will not be able to use the inception series CNN archs.

This is a reimplementation of temporal segment networks (TSN) in PyTorch. All settings are kept identical to the original caffe implementation.

For optical flow extraction and video list generation, you still need to use the original TSN codebase.

Training

To train a new model, use the main.py script.

The command to reproduce the original TSN experiments of RGB modality on UCF101 can be

python main.py ucf101 RGB <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 30 60 --epochs 80 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

For flow models:

python main.py ucf101 Flow <ucf101_flow_train_list> <ucf101_flow_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 190 300 --epochs 340 \
   -b 128 -j 8 --dropout 0.7 \
   --snapshot_pref ucf101_bninception_ --flow_pref flow_  

For RGB-diff models:

python main.py ucf101 RGBDiff <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 7 \
   --gd 40 --lr 0.001 --lr_steps 80 160 --epochs 180 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

Testing

After training, there will checkpoints saved by pytorch, for example ucf101_bninception_rgb_checkpoint.pth.

Use the following command to test its performance in the standard TSN testing protocol:

python test_models.py ucf101 RGB <ucf101_rgb_val_list> ucf101_bninception_rgb_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name>

Or for flow models:

python test_models.py ucf101 Flow <ucf101_rgb_val_list> ucf101_bninception_flow_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name> --flow_pref flow_
Owner
Young and simple. [email protected] -> Amazon Rekognition. We are hiring summer interns for 20
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Jihye Back 520 Jan 04, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022