keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

Overview

keras-ctpn

[TOC]

  1. 说明
  2. 预测
  3. 训练
  4. 例子
    4.1 ICDAR2015
    4.1.1 带侧边细化
    4.1.2 不带带侧边细化
    4.1.3 做数据增广-水平翻转
    4.2 ICDAR2017
    4.3 其它数据集
  5. toDoList
  6. 总结

说明

​ 本工程是keras实现的CPTN: Detecting Text in Natural Image with Connectionist Text Proposal Network . 本工程实现主要参考了keras-faster-rcnn ; 并在ICDAR2015和ICDAR2017数据集上训练和测试。

​ 工程地址: keras-ctpn

​ cptn论文翻译:CTPN.md

效果

​ 使用ICDAR2015的1000张图像训练在500张测试集上结果为:Recall: 37.07 % Precision: 42.94 % Hmean: 39.79 %; 原文中的F值为61%;使用了额外的3000张图像训练。

关键点说明:

a.骨干网络使用的是resnet50

b.训练输入图像大小为720*720; 将图像的长边缩放到720,保持长宽比,短边padding;原文是短边600;预测时使用1024*1024

c.batch_size为4, 每张图像训练128个anchor,正负样本比为1:1;

d.分类、边框回归以及侧边细化的损失函数权重为1:1:1;原论文中是1:1:2

e.侧边细化与边框回归选择一样的正样本anchor;原文中应该是分开选择的

f.侧边细化还是有效果的(注:网上很多人说没有啥效果)

g.由于有双向GRU,水平翻转会影响效果(见样例做数据增广-水平翻转)

h.随机裁剪做数据增广,网络不收敛

预测

a. 工程下载

git clone https://github.com/yizt/keras-ctpn

b. 预训练模型下载

​ ICDAR2015训练集上训练好的模型下载地址: google drive百度云盘 取码:wm47

c.修改配置类config.py中如下属性

	WEIGHT_PATH = '/tmp/ctpn.h5'

d. 检测文本

python predict.py --image_path image_3.jpg

评估

a. 执行如下命令,并将输出的txt压缩为zip包

python evaluate.py --weight_path /tmp/ctpn.100.h5 --image_dir /opt/dataset/OCR/ICDAR_2015/test_images/ --output_dir /tmp/output_2015/

b. 提交在线评估 将压缩的zip包提交评估,评估地址:http://rrc.cvc.uab.es/?ch=4&com=mymethods&task=1

训练

a. 训练数据下载

#icdar2013
wget http://rrc.cvc.uab.es/downloads/Challenge2_Training_Task12_Images.zip
wget http://rrc.cvc.uab.es/downloads/Challenge2_Training_Task1_GT.zip
wget http://rrc.cvc.uab.es/downloads/Challenge2_Test_Task12_Images.zip
#icdar2015
wget http://rrc.cvc.uab.es/downloads/ch4_training_images.zip
wget http://rrc.cvc.uab.es/downloads/ch4_training_localization_transcription_gt.zip
wget http://rrc.cvc.uab.es/downloads/ch4_test_images.zip
#icdar2017
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_training_images_1~8.zip
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_training_localization_transcription_gt_v2.zip
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_test_images.zip

b. resnet50与训练模型下载

wget https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5

c. 修改配置类config.py中,如下属性

	# 预训练模型
    PRE_TRAINED_WEIGHT = '/opt/pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'

    # 数据集路径
    IMAGE_DIR = '/opt/dataset/OCR/ICDAR_2015/train_images'
    IMAGE_GT_DIR = '/opt/dataset/OCR/ICDAR_2015/train_gt'

d.训练

python train.py --epochs 50

例子

ICDAR2015

带侧边细化

不带侧边细化

做数据增广-水平翻转

ICDAR2017

其它数据集

toDoList

  1. 侧边细化(已完成)
  2. ICDAR2017数据集训练(已完成)
  3. 检测文本行坐标映射到原图(已完成)
  4. 精度评估(已完成)
  5. 侧边回归,限制在边框内(已完成)
  6. 增加水平翻转(已完成)
  7. 增加随机裁剪(已完成)

总结

  1. ctpn对水平文字检测效果不错
  2. 整个网络对于数据集很敏感;在2017上训练的模型到2015上测试效果很不好;同样2015训练的在2013上测试效果也很差
  3. 推测由于双向GRU,网络有存储记忆的缘故?在使用随机裁剪作数据增广时网络不收敛,使用水平翻转时预测结果也水平对称出现
Owner
mick.yi
keyword:数据挖掘,深度学习,计算机视觉
mick.yi
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

EasyOCR Ready-to-use OCR with 80+ languages supported including Chinese, Japanese, Korean and Thai. What's new 1 February 2021 - Version 1.2.3 Add set

Jaided AI 16.7k Jan 03, 2023
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
Application that instantly translates sign-language to letters.

Sign Language Translator Project Description The main purpose of project is translating sign-language to letters. In accordance with this purpose we d

3 Sep 29, 2022
Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

Andreas Büttner 15 Nov 09, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022