TedEval: A Fair Evaluation Metric for Scene Text Detectors

Overview

TedEval: A Fair Evaluation Metric for Scene Text Detectors

Official Python 3 implementation of TedEval | paper | slides

Chae Young Lee, Youngmin Baek, and Hwalsuk Lee.

Clova AI Research, NAVER Corp.

Overview

We propose a new evaluation metric for scene text detectors called TedEval. Through separate instance-level matching policy and character-level scoring policy, TedEval solves the drawbacks of previous metrics such as IoU and DetEval. This code is based on ICDAR15 official evaluation code.

Methodology

1. Mathcing Policy

  • Non-exclusively gathers all possible matches of not only one-to-one but also one-to-many and many-to-one.
  • The threshold of both area recall and area precision are set to 0.4.
  • Multiline is identified and rejected when |min(theta, 180 - theta)| > 45 from Fig. 2.

2. Scoring Policy

We compute Pseudo Character Center (PCC) from word-level bounding boxes and penalize matches when PCCs are missing or overlapping.

Sample Evaluation

Experiments

We evaluated state-of-the-art scene text detectors with TedEval on two benchmark datasets: ICDAR 2013 Focused Scene Text (IC13) and ICDAR 2015 Incidental Scene Text (IC15). Detectors are listed in the order of published dates.

ICDAR 2013

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 82.1 92.7 87.6
RRPN 17/03/03 89.0 94.2 91.6
SegLink 17/03/19 65.6 74.9 70.0
EAST 17/04/11 77.7 87.1 82.5
WordSup 17/08/22 87.5 92.2 90.2
PixelLink 18/01/04 84.0 87.2 86.1
FOTS 18/01/05 91.5 93.0 92.6
TextBoxes++ 18/01/09 87.4 92.3 90.0
MaskTextSpotter 18/07/06 90.2 95.4 92.9
PMTD 19/03/28 94.0 95.2 94.7
CRAFT 19/04/03 93.6 96.5 95.1

ICDAR 2015

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 85.0 81.1 67.8
RRPN 17/03/03 79.5 85.9 82.6
SegLink 17/03/19 77.1 83.9 80.6
EAST 17/04/11 82.5 90.0 86.3
WordSup 17/08/22 83.2 87.1 85.2
PixelLink 18/01/04 85.7 86.1 86.0
FOTS 18/01/05 89.0 93.4 91.2
TextBoxes++ 18/01/09 82.4 90.8 86.5
MaskTextSpotter 18/07/06 82.5 91.8 86.9
PMTD 19/03/28 89.2 92.8 91.0
CRAFT 19/04/03 88.5 93.1 90.9

Frequency

Getting Started

Clone repository

git clone https://github.com/clovaai/TedEval.git

Requirements

  • python 3
  • python 3.x Polygon, Bottle, Pillow
# install
pip3 install Polygon3 bottle Pillow

Supported Annotation Type

  • LTRB(xmin, ymin, xmax, ymax)
  • QUAD(x1, y1, x2, y2, x3, y3, x4, y4)

Evaluation

Prepare data

The ground truth and the result data should be text files, one for each sample. Note that the naming rule of each text file is that there must be img_{number} in the filename and that the number indicate the image sample.

# gt/gt_img_38.txt
644,101,932,113,932,168,643,156,[email protected]
477,138,487,139,488,149,477,148,###
344,131,398,130,398,149,344,149,###
1195,148,1277,138,1277,177,1194,187,###
23,270,128,267,128,282,23,284,###

# result/res_img_38.txt
644,101,932,113,932,168,643,156,{Transcription},{Confidence}
477,138,487,139,488,149,477,148
344,131,398,130,398,149,344,149
1195,148,1277,138,1277,177,1194,187
23,270,128,267,128,282,23,284

Compress these text files.

zip gt.zip gt/*
zip result.zip result/*

Refer to gt/result.zip and gt/gt_*.zip for examples.

Run stand-alone evaluation

python script.pyg=gt/gt.zips=result/result.zip
  • Locate the path of GT and submission file using the flag -g and -s, respectively.
  • QUAD annotation type is used as default. To switch between {QUAD, LTRB}, add -p='{"LTRB" = False}' in the command or directly modify the default_evaluation_params() function in script.py.
  • If there are transcription or confidence values in your submission file, add -p='{"CONFIDENCES" = True} or -p='{"TRANSCRIPTION" = True}'.

Run Visualizer

python web.py
  • Place the zip file of images and GTs of the dataset named images.zip and gt.zip, respectively, in the gt directory.
  • Create an empty directory name output. This is where the DB, submission files, and result files will be created.
  • You can change the host and port number in the final line of web.py.

The file structure should then be:

.
├── gt
│   ├── gt.zip
│   └── images.zip
├── output   # empty dir
├── script.py
├── web.py
├── README.md
└── ...

Citation

@article{lee2019tedeval,
  title={TedEval: A Fair Evaluation Metric for Scene Text Detectors},
  author={Lee, Chae Young and Baek, Youngmin and Lee, Hwalsuk},
  journal={arXiv preprint arXiv:1907.01227},
  year={2019}
}

Contact us

We welcome any feedbacks to our metric. Please contact the authors via {cylee7133, youngmin.baek, hwalsuk.lee}@gmail.com. In case of code errors, open an issue and we will get to you.

License

Copyright (c) 2019-present NAVER Corp.

 Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
Morphological edge detection or object's boundary detection using erosion and dialation in OpenCV python

Morphologycal-edge-detection-using-erosion-and-dialation the task is to detect object boundary using erosion or dialation . Here, use the kernel or st

Tamzid hasan 3 Nov 25, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
Zoom , GoogleMeets에서 Vtuber 데뷔하기

EasyVtuber Facial landmark와 GAN을 이용한 Character Face Generation Google Meets, Zoom 등에서 자신만의 웹툰, 만화 캐릭터로 대화해보세요! 악세사리는 어느정도 추가해도 잘 작동해요! 안타깝게도 RTX 2070

Gunwoo Han 140 Dec 23, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022