TedEval: A Fair Evaluation Metric for Scene Text Detectors

Overview

TedEval: A Fair Evaluation Metric for Scene Text Detectors

Official Python 3 implementation of TedEval | paper | slides

Chae Young Lee, Youngmin Baek, and Hwalsuk Lee.

Clova AI Research, NAVER Corp.

Overview

We propose a new evaluation metric for scene text detectors called TedEval. Through separate instance-level matching policy and character-level scoring policy, TedEval solves the drawbacks of previous metrics such as IoU and DetEval. This code is based on ICDAR15 official evaluation code.

Methodology

1. Mathcing Policy

  • Non-exclusively gathers all possible matches of not only one-to-one but also one-to-many and many-to-one.
  • The threshold of both area recall and area precision are set to 0.4.
  • Multiline is identified and rejected when |min(theta, 180 - theta)| > 45 from Fig. 2.

2. Scoring Policy

We compute Pseudo Character Center (PCC) from word-level bounding boxes and penalize matches when PCCs are missing or overlapping.

Sample Evaluation

Experiments

We evaluated state-of-the-art scene text detectors with TedEval on two benchmark datasets: ICDAR 2013 Focused Scene Text (IC13) and ICDAR 2015 Incidental Scene Text (IC15). Detectors are listed in the order of published dates.

ICDAR 2013

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 82.1 92.7 87.6
RRPN 17/03/03 89.0 94.2 91.6
SegLink 17/03/19 65.6 74.9 70.0
EAST 17/04/11 77.7 87.1 82.5
WordSup 17/08/22 87.5 92.2 90.2
PixelLink 18/01/04 84.0 87.2 86.1
FOTS 18/01/05 91.5 93.0 92.6
TextBoxes++ 18/01/09 87.4 92.3 90.0
MaskTextSpotter 18/07/06 90.2 95.4 92.9
PMTD 19/03/28 94.0 95.2 94.7
CRAFT 19/04/03 93.6 96.5 95.1

ICDAR 2015

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 85.0 81.1 67.8
RRPN 17/03/03 79.5 85.9 82.6
SegLink 17/03/19 77.1 83.9 80.6
EAST 17/04/11 82.5 90.0 86.3
WordSup 17/08/22 83.2 87.1 85.2
PixelLink 18/01/04 85.7 86.1 86.0
FOTS 18/01/05 89.0 93.4 91.2
TextBoxes++ 18/01/09 82.4 90.8 86.5
MaskTextSpotter 18/07/06 82.5 91.8 86.9
PMTD 19/03/28 89.2 92.8 91.0
CRAFT 19/04/03 88.5 93.1 90.9

Frequency

Getting Started

Clone repository

git clone https://github.com/clovaai/TedEval.git

Requirements

  • python 3
  • python 3.x Polygon, Bottle, Pillow
# install
pip3 install Polygon3 bottle Pillow

Supported Annotation Type

  • LTRB(xmin, ymin, xmax, ymax)
  • QUAD(x1, y1, x2, y2, x3, y3, x4, y4)

Evaluation

Prepare data

The ground truth and the result data should be text files, one for each sample. Note that the naming rule of each text file is that there must be img_{number} in the filename and that the number indicate the image sample.

# gt/gt_img_38.txt
644,101,932,113,932,168,643,156,[email protected]
477,138,487,139,488,149,477,148,###
344,131,398,130,398,149,344,149,###
1195,148,1277,138,1277,177,1194,187,###
23,270,128,267,128,282,23,284,###

# result/res_img_38.txt
644,101,932,113,932,168,643,156,{Transcription},{Confidence}
477,138,487,139,488,149,477,148
344,131,398,130,398,149,344,149
1195,148,1277,138,1277,177,1194,187
23,270,128,267,128,282,23,284

Compress these text files.

zip gt.zip gt/*
zip result.zip result/*

Refer to gt/result.zip and gt/gt_*.zip for examples.

Run stand-alone evaluation

python script.pyg=gt/gt.zips=result/result.zip
  • Locate the path of GT and submission file using the flag -g and -s, respectively.
  • QUAD annotation type is used as default. To switch between {QUAD, LTRB}, add -p='{"LTRB" = False}' in the command or directly modify the default_evaluation_params() function in script.py.
  • If there are transcription or confidence values in your submission file, add -p='{"CONFIDENCES" = True} or -p='{"TRANSCRIPTION" = True}'.

Run Visualizer

python web.py
  • Place the zip file of images and GTs of the dataset named images.zip and gt.zip, respectively, in the gt directory.
  • Create an empty directory name output. This is where the DB, submission files, and result files will be created.
  • You can change the host and port number in the final line of web.py.

The file structure should then be:

.
├── gt
│   ├── gt.zip
│   └── images.zip
├── output   # empty dir
├── script.py
├── web.py
├── README.md
└── ...

Citation

@article{lee2019tedeval,
  title={TedEval: A Fair Evaluation Metric for Scene Text Detectors},
  author={Lee, Chae Young and Baek, Youngmin and Lee, Hwalsuk},
  journal={arXiv preprint arXiv:1907.01227},
  year={2019}
}

Contact us

We welcome any feedbacks to our metric. Please contact the authors via {cylee7133, youngmin.baek, hwalsuk.lee}@gmail.com. In case of code errors, open an issue and we will get to you.

License

Copyright (c) 2019-present NAVER Corp.

 Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data

VistaOCR ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data Publications "How to Efficiently Increase Resolutio

ISI Center for Vision, Image, Speech, and Text Analytics 21 Dec 08, 2021
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
docstrum

Docstrum Algorithm Getting Started This repo is for developing a Docstrum algorithm presented by O’Gorman (1993). Disclaimer This source code is built

Chulwoo Mike Pack 54 Dec 13, 2022