Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

Related tags

Computer VisionSEAM
Overview

SEAM

The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion.

You can also download the repository from https://gitee.com/hibercraft/SEAM

Abstract

Image-level weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recentyears. Most of advanced solutions exploit class activation map (CAM). However, CAMs can hardly serve as the object mask due to the gap between full and weak supervisions. In this paper, we propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap. Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation, whose pixel-level labels take the same spatial transformation as the input images during data augmentation. However, this constraint is lost on the CAMs trained by image-level supervision. Therefore, we propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning. Moreover, we propose a pixel correlation module (PCM), which exploits context appearance information and refines the prediction of current pixel by its similar neighbors, leading to further improvement on CAMs consistency. Extensive experiments on PASCAL VOC 2012 dataset demonstrate our method outperforms state-of-the-art methods using the same level of supervision.

Thanks to the work of jiwoon-ahn, the code of this repository borrow heavly from his AffinityNet repository, and we follw the same pipeline to verify the effectiveness of our SEAM.

Requirements

  • Python 3.6
  • pytorch 0.4.1, torchvision 0.2.1
  • CUDA 9.0
  • 4 x GPUs (12GB)

Usage

Installation

  • Download the repository.
git clone https://github.com/YudeWang/SEAM.git
  • Install python dependencies.
pip install -r requirements.txt
ln -s $your_dataset_path/VOCdevkit/VOC2012 VOC2012
  • (Optional) The image-level labels have already been given in voc12/cls_label.npy. If you want to regenerate it (which is unnecessary), please download the annotation of VOC 2012 SegmentationClassAug training set (containing 10582 images), which can be download here and place them all as VOC2012/SegmentationClassAug/xxxxxx.png. Then run the code
cd voc12
python make_cls_labels.py --voc12_root VOC2012

SEAM step

  1. SEAM training
python train_SEAM.py --voc12_root VOC2012 --weights $pretrained_model --session_name $your_session_name
  1. SEAM inference.
python infer_SEAM.py --weights $SEAM_weights --infer_list [voc12/val.txt | voc12/train.txt | voc12/train_aug.txt] --out_cam $your_cam_dir --out_crf $your_crf_dir
  1. SEAM step evaluation. We provide python mIoU evaluation script evaluation.py, or you can use official development kit. Here we suggest to show the curve of mIoU with different background score.
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_cam_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type npy --curve True

Random walk step

The random walk step keep the same with AffinityNet repository.

  1. Train AffinityNet.
python train_aff.py --weights $pretrained_model --voc12_root VOC2012 --la_crf_dir $your_crf_dir_4.0 --ha_crf_dir $your_crf_dir_24.0 --session_name $your_session_name
  1. Random walk propagation
python infer_aff.py --weights $aff_weights --infer_list [voc12/val.txt | voc12/train.txt] --cam_dir $your_cam_dir --voc12_root VOC2012 --out_rw $your_rw_dir
  1. Random walk step evaluation
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_rw_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type png

Pseudo labels retrain

Pseudo label retrain on DeepLabv1. Code is available here.

Citation

Please cite our paper if the code is helpful to your research.

@InProceedings{Wang_2020_CVPR_SEAM,
    author = {Yude Wang and Jie Zhang and Meina Kan and Shiguang Shan and Xilin Chen},
    title = {Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation},
    booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020}
}

Reference

[1] J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Owner
Hibercraft
CS PhD, CV & DL
Hibercraft
A real-time dolly zoom camera effect

Dolly-Zoom I've always been amazed by the gradual perspective change of dolly zoom, and I have some experience in python and OpenCV, so I decided to c

Dylan Kai Lau 52 Dec 08, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
Image processing using OpenCv

Image processing using OpenCv Write a program that opens the webcam, and the user selects one of the following on the video: ✅ If the user presses the

M.Najafi 4 Feb 18, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
Document Layout Analysis

Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P

QURATOR-SPK 198 Dec 29, 2022
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022