[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Overview

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

This is the official implementation for the method described in

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Jiaxing Yan, Hong Zhao, Penghui Bu and YuSheng Jin.

3DV 2021 (arXiv pdf)

Quantitative_results

Qualitative_result

Setup

Assuming a fresh Anaconda distribution, you can install the dependencies with:

conda install pytorch=1.7.0 torchvision=0.8.1 -c pytorch
pip install tensorboardX==2.1
pip install opencv-python==3.4.7.28
pip install albumentations==0.5.2   # we use albumentations for faster image preprocessing

This project uses Python 3.7.8, cuda 11.4, the experiments were conducted using a single NVIDIA RTX 3090 GPU and CPU environment - Intel Core i9-9900KF.

We recommend using a conda environment to avoid dependency conflicts.

Prediction for a single image

You can predict scaled disparity for a single image with:

python test_simple.py --image_path images/test_image.jpg --model_name MS_1024x320

On its first run either of these commands will download the MS_1024x320 pretrained model (272MB) into the models/ folder. We provide the following options for --model_name:

--model_name Training modality Resolution Abs_Rel Sq_Rel $\delta<1.25$
M_640x192 Mono 640 x 192 0.105 0.769 0.892
M_1024x320 Mono 1024 x 320 0.102 0.734 0.898
M_1280x384 Mono 1280 x 384 0.102 0.715 0.900
MS_640x192 Mono + Stereo 640 x 192 0.102 0.752 0.894
MS_1024x320 Mono + Stereo 1024 x 320 0.096 0.694 0.908

KITTI training data

You can download the entire raw KITTI dataset by running:

wget -i splits/kitti_archives_to_download.txt -P kitti_data/

Then unzip with

cd kitti_data
unzip "*.zip"
cd ..

Splits

The train/test/validation splits are defined in the splits/ folder. By default, the code will train a depth model using Zhou's subset of the standard Eigen split of KITTI, which is designed for monocular training. You can also train a model using the new benchmark split or the odometry split by setting the --split flag.

Training

Monocular training:

python train.py --model_name mono_model

Stereo training:

Our code defaults to using Zhou's subsampled Eigen training data. For stereo-only training we have to specify that we want to use the full Eigen training set.

python train.py --model_name stereo_model \
  --frame_ids 0 --use_stereo --split eigen_full

Monocular + stereo training:

python train.py --model_name mono+stereo_model \
  --frame_ids 0 -1 1 --use_stereo

Note: For high resolution input, e.g. 1024x320 and 1280x384, we employ a lightweight setup, ResNet18 and 640x192, for pose encoder at training for memory savings. The following example command trains a model named M_1024x320:

python train.py --model_name M_1024x320 --num_layers 50 --height 320 --width 1024 --num_layers_pose 18 --height_pose 192 --width_pose 640
#             encoder     resolution                                     
# DepthNet   resnet50      1024x320
# PoseNet    resnet18       640x192

Finetuning a pretrained model

Add the following to the training command to load an existing model for finetuning:

python train.py --model_name finetuned_mono --load_weights_folder ~/tmp/mono_model/models/weights_19

Other training options

Run python train.py -h (or look at options.py) to see the range of other training options, such as learning rates and ablation settings.

KITTI evaluation

To prepare the ground truth depth maps run:

python export_gt_depth.py --data_path kitti_data --split eigen
python export_gt_depth.py --data_path kitti_data --split eigen_benchmark

...assuming that you have placed the KITTI dataset in the default location of ./kitti_data/.

The following example command evaluates the weights of a model named MS_1024x320:

python evaluate_depth.py --load_weights_folder ./log/MS_1024x320 --eval_mono --data_path ./kitti_data --eval_split eigen

Precomputed results

You can download our precomputed disparity predictions from the following links:

Training modality Input size .npy filesize Eigen disparities
Mono 640 x 192 326M Download 🔗
Mono 1024 x 320 871M Download 🔗
Mono 1280 x 384 1.27G Download 🔗
Mono + Stereo 640 x 192 326M Download 🔗
Mono + Stereo 1024 x 320 871M Download 🔗

References

Monodepth2 - https://github.com/nianticlabs/monodepth2

Owner
Jiaxing Yan
1.Machine Vision 2.DeepLearning 3.C/C++ 4.Python
Jiaxing Yan
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023