This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

Overview

SPARQLing Database Queries from Intermediate Question Decompositions

This repo is the implementation of the following paper:

SPARQLing Database Queries from Intermediate Question Decompositions
Irina Saparina and Anton Osokin
To appear in proceedings of EMNLP'21

License

This software is released under the MIT license, which means that you can use the code in any way you want.

Dependencies

Conda env with pytorch 1.9

Create conda env with pytorch 1.9 and many other packages upgraded: conda_env_with_pytorch1.9.yaml:

conda env create -n env-torch1.9 -f conda_env_with_pytorch1.9.yaml
conda activate env-torch1.9

Download some nltk resourses, Bert and GraPPa:

python -c "import nltk; nltk.download('stopwords'); nltk.download('punkt')"
python -c "from transformers import AutoModel; AutoModel.from_pretrained('bert-large-uncased-whole-word-masking'); AutoModel.from_pretrained('Salesforce/grappa_large_jnt')"

mkdir -p third_party && \
cd third_party && \
curl https://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip | jar xv

Data

We currently provide both Spider and Break inside our repos. Note that datasets differ from original ones as we fixed some annotation errors. Download databases:

bash ./utils/wget_gdrive.sh spider_temp.zip 11icoH_EA-NYb0OrPTdehRWm_d7-DIzWX
unzip spider_temp.zip -d spider_temp
cp -r spider_temp/spider/database ./data/spider
rm -rf spider_temp/
python ./qdmr2sparql/fix_databases.py --spider_path ./data/spider

To reproduce our annotation procedure see qdmr2sparql/README.md.

For testing qdmr2sparql translator run qdmr2sparql/test_qdmr2sparql.py

Experiments

Every experiment has its own config file in text2qdmr/configs/experiments. The pipeline of working with any model version or dataset is:

python run_text2qdmr.py preprocess experiment_config_file  # preprocess the data
python run_text2qdmr.py train experiment_config_file       # train a model
python run_text2qdmr.py eval experiment_config_file        # evaluate the results

# multiple GPUs on one machine:
export NGPUS=4 # set $NGPUS manually
python -m torch.distributed.launch --nproc_per_node=$NGPUS --use_env --master_port `./utils/get_free_port.sh`  run_text2qdmr.py train experiment_config_file

Note that preprocessing and evaluation use execution and take some time. To speed up the evaluation, you can install Virtuoso server (see qdmr2sparql/README_Virtuoso.md).

Checkpoints and samples

The dev and test examples of model output are model_samples/.

Checkpoints of our best models:

Model name Dev Test Link
grappa-aug 80.4 62.0 https://www.dropbox.com/s/t9z1uwvohuakig8/grappa-aug_model_checkpoint-00072000?dl=0
grappa-full_break 74.6 62.6 https://www.dropbox.com/s/bf6vyhtep4knmm7/full-break-grappa_model_checkpoint-00075000?dl=0

Acknowledgements

Text2qdmr module is based on RAT-SQL code, the implementation of ACL'20 paper "RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers" by Wang et al.

Spider dataset was proposed by Yi et al. in EMNLP'18 paper "Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task".

Break dataset was proposed by Wolfson et al. in TACL paper "Break It Down: A Question Understanding Benchmark".

Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022