[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

Overview

PointDSC repository

PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency", by Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai.

This paper focus on outlier rejection for 3D point clouds registration. If you find this project useful, please cite:

@article{bai2021pointdsc,
  title={{PointDSC}: {R}obust {P}oint {C}loud {R}egistration using {D}eep {S}patial {C}onsistency},
  author={Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai},
  journal={CVPR},
  year={2021}
}

Introduction

Removing outlier correspondences is one of the critical steps for successful feature-based point cloud registration. Despite the increasing popularity of introducing deep learning techniques in this field, spatial consistency, which is essentially established by a Euclidean transformation between point clouds, has received almost no individual attention in existing learning frameworks. In this paper, we present PointDSC, a novel deep neural network that explicitly incorporates spatial consistency for pruning outlier correspondences. First, we propose a nonlocal feature aggregation module, weighted by both feature and spatial coherence, for feature embedding of the input correspondences. Second, we formulate a differentiable spectral matching module, supervised by pairwise spatial compatibility, to estimate the inlier confidence of each correspondence from the embedded features. With modest computation cost, our method outperforms the state-of-the-art hand-crafted and learning-based outlier rejection approaches on several real-world datasets by a significant margin. We also show its wide applicability by combining PointDSC with different 3D local descriptors.

fig0

Requirements

If you are using conda, you may configure PointDSC as:

conda env create -f environment.yml
conda activate pointdsc

If you also want to use FCGF as the 3d local descriptor, please install MinkowskiEngine v0.5.0 and download the FCGF model (pretrained on 3DMatch) from here.

Demo

We provide a small demo to extract dense FPFH descriptors for two point cloud, and register them using PointDSC. The ply files are saved in the demo_data folder, which can be replaced by your own data. Please use model pretrained on 3DMatch for indoor RGB-D scans and model pretrained on KITTI for outdoor LiDAR scans. To try the demo, please run

python demo_registration.py --chosen_snapshot [PointDSC_3DMatch_release/PointDSC_KITTI_release] --descriptor [fcgf/fpfh]

For challenging cases, we recommend to use learned feature descriptors like FCGF or D3Feat.

Dataset Preprocessing

3DMatch

The raw point clouds of 3DMatch can be downloaded from FCGF repo. The test set point clouds and the ground truth poses can be downloaded from 3DMatch Geometric Registration website. Please make sure the data folder contains the following:

.                          
├── fragments                 
│   ├── 7-scene-redkitechen/       
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1/      
│   └── ...                
├── gt_result                   
│   ├── 7-scene-redkitechen-evaluation/   
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1-evaluation/
│   └── ...         
├── threedmatch            
│   ├── *.npz
│   └── *.txt                            

To reduce the training time, we pre-compute the 3D local descriptors (FCGF or FPFH) so that we can directly build the input correspondence using NN search during training. Please use misc/cal_fcgf.py or misc/cal_fpfh.py to extract FCGF or FPFH descriptors. Here we provide the pre-computed descriptors for the 3DMatch test set.

KITTI

The raw point clouds can be download from KITTI Odometry website. Please follow the similar steps as 3DMatch dataset for pre-processing.

Augmented ICL-NUIM

Data can be downloaded from Redwood website. Details can be found in multiway/README.md

Pretrained Model

We provide the pre-trained model of 3DMatch in snapshot/PointDSC_3DMatch_release and KITTI in snapshot/PointDSC_KITTI_release.

Instructions to training and testing

3DMatch

The training and testing on 3DMatch dataset can be done by running

python train_3dmatch.py

python evaluation/test_3DMatch.py --chosen_snapshot [exp_id] --use_icp False

where the exp_id should be replaced by the snapshot folder name for testing (e.g. PointDSC_3DMatch_release). The testing results will be saved in logs/. The training config can be changed in config.py. We also provide the scripts to test the traditional outlier rejection baselines on 3DMatch in baseline_scripts/baseline_3DMatch.py.

KITTI

Similarly, the training and testing of KITTI data set can be done by running

python train_KITTI.py

python evaluation/test_KITTI.py --chosen_snapshot [exp_id] --use_icp False

We also provide the scripts to test the traditional outlier rejection baselines on KITTI in baseline_scripts/baseline_KITTI.py.

Augmemented ICL-NUIM

The detailed guidance of evaluating our method in multiway registration tasks can be found in multiway/README.md

3DLoMatch

We also evaluate our method on a recently proposed benchmark 3DLoMatch following OverlapPredator,

python evaluation/test_3DLoMatch.py --chosen_snapshot [exp_id] --descriptor [fcgf/predator] --num_points 5000

If you want to evaluate predator descriptor with PointDSC, you first need to follow the offical instruction of OverlapPredator to extract the features.

Contact

If you run into any problems or have questions, please create an issue or contact [email protected]

Acknowledgments

We thank the authors of

for open sourcing their methods.

Owner
PhD candidate at HKUST.
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022