Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Overview

Punctuation Restoration using Transformer Models

This repository contins official implementation of the paper Punctuation Restoration using Transformer Models for High-and Low-Resource Languages accepted at the EMNLP workshop W-NUT 2020.

Data

English

English datasets are provided in data/en directory. These are collected from here.

Bangla

Bangla datasets are provided in data/bn directory.

Model Architecture

We fine-tune a Transformer architecture based language model (e.g., BERT) for the punctuation restoration task. Transformer encoder is followed by a bidirectional LSTM and linear layer that predicts target punctuation token at each sequence position.

Dependencies

Install PyTorch following instructions from PyTorch website. Remaining dependencies can be installed with the following command

pip install -r requirements.txt

Training

To train punctuation restoration model with optimal parameter settings for English run the following command

python src/train.py --cuda=True --pretrained-model=roberta-large --freeze-bert=False --lstm-dim=-1 
--language=english --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

To train for Bangla the corresponding command is

python src/train.py --cuda=True --pretrained-model=xlm-roberta-large --freeze-bert=False --lstm-dim=-1 
--language=bangla --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

Supported models for English

bert-base-uncased
bert-large-uncased
bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-en-2048
xlm-mlm-100-1280
roberta-base
roberta-large
distilbert-base-uncased
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large
albert-base-v1
albert-base-v2
albert-large-v2

Supported models for Bangla

bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-100-1280
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large

Pretrained Models

You can find pretrained mdoels for RoBERTa-large model with augmentation for English here
XLM-RoBERTa-large model with augmentation for Bangla can be found here

Inference

You can run inference on unprocessed text file to produce punctuated text using inference module. Note that if the text already contains punctuation they are removed before inference.

Example script for English:

python inference.py --pretrained-model=roberta-large --weight-path=roberta-large-en.pt --language=en 
--in-file=data/test_en.txt --out-file=data/test_en_out.txt

This should create the text file with following output:

Tolkien drew on a wide array of influences including language, Christianity, mythology, including the Norse Völsunga saga, archaeology, especially at the Temple of Nodens, ancient and modern literature and personal experience. He was inspired primarily by his profession, philology. his work centred on the study of Old English literature, especially Beowulf, and he acknowledged its importance to his writings. 

Similarly, For Bangla

python inference.py --pretrained-model=xlm-roberta-large --weight-path=xlm-roberta-large-bn.pt --language=bn  
--in-file=data/test_bn.txt --out-file=data/test_bn_out.txt

The expected output is

বিংশ শতাব্দীর বাংলা মননে কাজী নজরুল ইসলামের মর্যাদা ও গুরুত্ব অপরিসীম। একাধারে কবি, সাহিত্যিক, সংগীতজ্ঞ, সাংবাদিক, সম্পাদক, রাজনীতিবিদ এবং সৈনিক হিসেবে অন্যায় ও অবিচারের বিরুদ্ধে নজরুল সর্বদাই ছিলেন সোচ্চার। তার কবিতা ও গানে এই মনোভাবই প্রতিফলিত হয়েছে। অগ্নিবীণা হাতে তার প্রবেশ, ধূমকেতুর মতো তার প্রকাশ। যেমন লেখাতে বিদ্রোহী, তেমনই জীবনে কাজেই "বিদ্রোহী কবি"। তার জন্ম ও মৃত্যুবার্ষিকী বিশেষ মর্যাদার সঙ্গে উভয় বাংলাতে প্রতি বৎসর উদযাপিত হয়ে থাকে। 

Please note that Comma includes commas, colons and dashes, Period includes full stops, exclamation marks and semicolons and Question is just question marks.

Test

Trained models can be tested on processed data using test module to prepare result.

For example, to test the best preforming English model run following command

python src/test.py --pretrained-model=roberta-large --lstm-dim=-1 --use-crf=False --data-path=data/test
--weight-path=weights/roberta-large-en.pt --sequence-length=256 --save-path=out

Please provide corresponding arguments for pretrained-model, lstm-dim, use-crf that were used during training the model. This will run test for all data available in data-path directory.

Cite this work

@inproceedings{alam-etal-2020-punctuation,
    title = "Punctuation Restoration using Transformer Models for High-and Low-Resource Languages",
    author = "Alam, Tanvirul  and
      Khan, Akib  and
      Alam, Firoj",
    booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.wnut-1.18",
    pages = "132--142",
}
Owner
Tanvirul Alam
Deep Learning, Physics, Cosmology, Mythology, RPG.
Tanvirul Alam
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023