使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Overview

Pretrain_Bert_with_MaskLM

Info

使用Mask LM预训练任务来预训练Bert模型。

基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。

Pretraining Task

Mask Language Model,简称Mask LM,即基于Mask机制的预训练语言模型。

同时支持 原生的MaskLM任务和Whole Words Masking任务。默认使用Whole Words Masking

MaskLM

使用来自于Bert的mask机制,即对于每一个句子中的词(token):

  • 85%的概率,保留原词不变
  • 15%的概率,使用以下方式替换
    • 80%的概率,使用字符[MASK],替换当前token。
    • 10%的概率,使用词表随机抽取的token,替换当前token。
    • 10%的概率,保留原词不变。

Whole Words Masking

与MaskLM类似,但是在mask的步骤有些少不同。

在Bert类模型中,考虑到如果单独使用整个词作为词表的话,那词表就太大了。不利于模型对同类词的不同变种的特征学习,故采用了WordPiece的方式进行分词。

Whole Words Masking的方法在于,在进行mask操作时,对象变为分词前的整个词,而非子词。

Model

使用原生的Bert模型作为基准模型。

Datasets

项目里的数据集来自wikitext,分成两个文件训练集(train.txt)和测试集(test.txt)。

数据以行为单位存储。

若想要替换成自己的数据集,可以使用自己的数据集进行替换。(注意:如果是预训练中文模型,需要修改配置文件Config.py中的self.initial_pretrain_modelself.initial_pretrain_tokenizer,将值修改成 bert-base-chinese

自己的数据集不需要做mask机制处理,代码会处理。

Training Target

本项目目的在于基于现有的预训练模型参数,如google开源的bert-base-uncasedbert-base-chinese等,在垂直领域的数据语料上,再次进行预训练任务,由此提升bert的模型表征能力,换句话说,也就是提升下游任务的表现。

Environment

项目主要使用了Huggingface的datasetstransformers模块,支持CPU、单卡单机、单机多卡三种模式。

可通过以下命令安装依赖包

    pip install -r requirement.txt

主要包含的模块如下:

    python3.6
    torch==1.3.0
    tqdm==4.61.2
    transformers==4.6.1
    datasets==1.10.2
    numpy==1.19.5
    pandas==1.1.3

Get Start

单卡模式

直接运行以下命令

    python train.py

或修改Config.py文件中的变量self.cuda_visible_devices为单卡后,运行

    chmod 755 run.sh
    ./run.sh

多卡模式

如果你足够幸运,拥有了多张GPU卡,那么恭喜你,你可以进入起飞模式。 🚀 🚀

(1)使用torch的nn.parallel.DistributedDataParallel模块进行多卡训练。其中config.py文件中参数如下,默认可以不用修改。

  • self.cuda_visible_devices表示程序可见的GPU卡号,示例:1,2→可在GPU卡号为1和2上跑,亦可以改多张,如0,1,2,3
  • self.device在单卡模式,表示程序运行的卡号;在多卡模式下,表示master的主卡,默认会变成你指定卡号的第一张卡。若只有cpu,那么可修改为cpu
  • self.port表示多卡模式下,进程通信占用的端口号。(无需修改)
  • self.init_method表示多卡模式下进程的通讯地址。(无需修改)
  • self.world_size表示启动的进程数量(无需修改)。在torch==1.3.0版本下,只需指定一个进程。在1.9.0以上,需要与GPU数量相同。

(2)运行程序启动命令

    chmod 755 run.sh
    ./run.sh

Experiment

使用交叉熵(cross-entropy)作为损失函数,困惑度(perplexity)和Loss作为评价指标来进行训练,训练过程如下:

Reference

【Bert】https://arxiv.org/pdf/1810.04805.pdf

【transformers】https://github.com/huggingface/transformers

【datasets】https://huggingface.co/docs/datasets/quicktour.html

Owner
Desmond Ng
NLP Engineer
Desmond Ng
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021