使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Overview

Pretrain_Bert_with_MaskLM

Info

使用Mask LM预训练任务来预训练Bert模型。

基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。

Pretraining Task

Mask Language Model,简称Mask LM,即基于Mask机制的预训练语言模型。

同时支持 原生的MaskLM任务和Whole Words Masking任务。默认使用Whole Words Masking

MaskLM

使用来自于Bert的mask机制,即对于每一个句子中的词(token):

  • 85%的概率,保留原词不变
  • 15%的概率,使用以下方式替换
    • 80%的概率,使用字符[MASK],替换当前token。
    • 10%的概率,使用词表随机抽取的token,替换当前token。
    • 10%的概率,保留原词不变。

Whole Words Masking

与MaskLM类似,但是在mask的步骤有些少不同。

在Bert类模型中,考虑到如果单独使用整个词作为词表的话,那词表就太大了。不利于模型对同类词的不同变种的特征学习,故采用了WordPiece的方式进行分词。

Whole Words Masking的方法在于,在进行mask操作时,对象变为分词前的整个词,而非子词。

Model

使用原生的Bert模型作为基准模型。

Datasets

项目里的数据集来自wikitext,分成两个文件训练集(train.txt)和测试集(test.txt)。

数据以行为单位存储。

若想要替换成自己的数据集,可以使用自己的数据集进行替换。(注意:如果是预训练中文模型,需要修改配置文件Config.py中的self.initial_pretrain_modelself.initial_pretrain_tokenizer,将值修改成 bert-base-chinese

自己的数据集不需要做mask机制处理,代码会处理。

Training Target

本项目目的在于基于现有的预训练模型参数,如google开源的bert-base-uncasedbert-base-chinese等,在垂直领域的数据语料上,再次进行预训练任务,由此提升bert的模型表征能力,换句话说,也就是提升下游任务的表现。

Environment

项目主要使用了Huggingface的datasetstransformers模块,支持CPU、单卡单机、单机多卡三种模式。

可通过以下命令安装依赖包

    pip install -r requirement.txt

主要包含的模块如下:

    python3.6
    torch==1.3.0
    tqdm==4.61.2
    transformers==4.6.1
    datasets==1.10.2
    numpy==1.19.5
    pandas==1.1.3

Get Start

单卡模式

直接运行以下命令

    python train.py

或修改Config.py文件中的变量self.cuda_visible_devices为单卡后,运行

    chmod 755 run.sh
    ./run.sh

多卡模式

如果你足够幸运,拥有了多张GPU卡,那么恭喜你,你可以进入起飞模式。 🚀 🚀

(1)使用torch的nn.parallel.DistributedDataParallel模块进行多卡训练。其中config.py文件中参数如下,默认可以不用修改。

  • self.cuda_visible_devices表示程序可见的GPU卡号,示例:1,2→可在GPU卡号为1和2上跑,亦可以改多张,如0,1,2,3
  • self.device在单卡模式,表示程序运行的卡号;在多卡模式下,表示master的主卡,默认会变成你指定卡号的第一张卡。若只有cpu,那么可修改为cpu
  • self.port表示多卡模式下,进程通信占用的端口号。(无需修改)
  • self.init_method表示多卡模式下进程的通讯地址。(无需修改)
  • self.world_size表示启动的进程数量(无需修改)。在torch==1.3.0版本下,只需指定一个进程。在1.9.0以上,需要与GPU数量相同。

(2)运行程序启动命令

    chmod 755 run.sh
    ./run.sh

Experiment

使用交叉熵(cross-entropy)作为损失函数,困惑度(perplexity)和Loss作为评价指标来进行训练,训练过程如下:

Reference

【Bert】https://arxiv.org/pdf/1810.04805.pdf

【transformers】https://github.com/huggingface/transformers

【datasets】https://huggingface.co/docs/datasets/quicktour.html

Owner
Desmond Ng
NLP Engineer
Desmond Ng
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022