Remote sensing change detection tool based on PaddlePaddle

Overview

PdRSCD

Python 3.7 Paddle 2.1.0 License GitHub Repo stars

PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完成分割、变化检测等任务。

在线项目实例

  1. 【ppcd快速入门】经典LEVIR数据集变化检测
  2. 【ppcd快速入门】大图滑框变化检测与拼接
  3. 【ppcd快速入门】多光谱遥感影像变化检测
  4. 【ppcd快速入门】多光谱遥感影像分割
  5. 【ppcd快速入门】多标签遥感图像变化检测(待更)
  6. 【ppcd快速入门】分类标签遥感变化检测(待更)

特点

  1. 适应$N(N\ge1)$期图像的读取和增强,支持jpg、tmp、tif和npy等格式,支持多光谱/波段
  2. 有更多有特色的数据增强
  3. 适应分割图标签、分类标签以及多标签(分割+变化标签)
  4. 网络多返回、多标签和多损失之间的组合
  5. 适应单通道预测图及双通道预测图的输出(argmax与threshold)
  6. 支持大图滑框/随机采样训练和滑框预测与拼接
  7. 支持保存为带地理坐标的tif

代码结构

PdRSCD的主要代码在ppcd中,文件夹组织如下。可以根据自己的任务修改和添加下面的代码。

ppcd
  ├── core  # 包含训练和预测的代码
  ├── datasets  # 包含创建数据列表和定义数据集的代码
  ├── losses  # 包含损失函数的代码
  ├── metrics  # 包含指标评价的代码
  ├── models  # 包含网络模型、特殊层、层初始化等代码
  ├── traditions  # 包含一些传统计算方法的代码
  ├── transforms  # 包含数据增强的代码
  ├── utils  # 包含其他代码,如计时等
  └── tools  # 包含工具代码,如分块、图像查看器等

现有资产与自定义

  1. 自定义数据集
  2. 模型库与自定义模型
  3. 损失函数与自定义损失函数
  4. 数据增强与自定义数据增强
  5. 传统处理方法
  6. 工具组

使用入门

  • 可以通过pip使用官方原直接进行安装。
pip install ppcd -i https://pypi.org/simple
  • 也可以通过克隆PdRSCD到项目中,并添加到环境变量。
# 克隆项目
# git clone https://github.com/geoyee/PdRSCD.git  # github可能较慢
git clone https://gitee.com/Geoyee/pd-rscd.git
    
import sys
sys.path.append('pd-rscd')  # 加载环境变量

说明

  1. 当前更新后需要在PaddlePaddle2.1.0及以上上运行,否则可能会卡在DataLoader上。除此之外DataLoader可能还存在问题,例如在一个CPU项目上卡住了,不知道原因,建议在2.1.0及以上版本的GPU设备上运行(至少AI Studio的GPU肯定是没问题的)。
  2. 由于GDAL无法直接通过pip安装,所以如果需要使用GDAL的地方目前需要自行安装GDAL。

后续重点

  • 添加多源数据输入,栅格得分结果输出的空间分析功能(问号)
  • 添加将tif转为shp以及读取shp进行训练。预测(尽量)

相关链接

Owner
飞桨3S小分队
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022