ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Overview

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rendering model based on the transformer architecture. The model is capable of both novel view synthesis and camera pose estimation. It is evaluated on previously unseen 3D scenes.

Paper    Web    Demo


Open In Colab Python Versions

Getting started

Start by creating a python 3.8 venv. From the activated environment, you can run the following command in the directory containing setup.py:

pip install -e .

Getting datasets

In this section, we describe how you can prepare the data for training. We assume that you have your environment ready and you want to store the dataset into {output path} directory.

Shepard-Metzler-Parts-7

Please, first visit https://github.com/deepmind/gqn-datasets.

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split train

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split test

InteriorNet

Download the dataset into the directory {source} by following the instruction here: https://interiornet.org/. Then, proceed as follows:

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

Common Objects in 3D

Download the dataset into the directory {source} by following the instruction here: https://ai.facebook.com/datasets/CO3D-dataset.

Install the following dependencies: plyfile>=0.7.4 pytorch3d. Then, generate the dataset for 10 categories as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split val

Alternatively, generate the full dataset as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split val

ShapeNet cars and chairs dataset

Download and extract the SRN datasets into the directory {source}. The files can be found here: https://drive.google.com/drive/folders/1OkYgeRcIcLOFu1ft5mRODWNQaPJ0ps90.

Then, generate the dataset as follows:

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

where {category} is either cars or chairs.

Faster preprocessing

In order to make the preprocessing faster, you can add --shards {process id}/{num processes} to the command and run multiple instances of the command in multiple processes.

Training the codebook model

The codebook model training uses the PyTorch framework, but the resulting model can be loaded by both TensorFlow and PyTorch. The training code was also prepared for TensorFlow framework, but in order to get the same results as published in the paper, PyTorch code should be used. To train the codebook model on 8 GPUs, run the following code:

viewformer-cli train codebook \
    --job-dir . \
    --dataset "{dataset path}" \
    --num-gpus 8 \
    --batch-size 352 \
    --n-embed 1024 \
    --learning-rate 1.584e-3 \
    --total-steps 200000

Replace {dataset path} by the real dataset path. Note that you can use more than one dataset. In that case, the dataset paths should be separated by a comma. Also, if the size of dataset is not large enough to support sharding, you can reduce the number of data loading workers by using --num-val-workers and --num-workers arguments. The argument --job-dir specifies the path where the resulting model and logs will be stored. You can also use the --wandb flag, that enables logging to wandb.

Finetuning the codebook model

If you want to finetune an existing codebook model, add --resume-from-checkpoint "{checkpoint path}" to the command and increase the number of total steps.

Transforming the dataset into the code representation

Before the transformer model can be trained, the dataset has to be transformed into the code representation. This can be achieved by running the following command (on a single GPU):

viewformer-cli generate-codes \
    --model "{codebook model checkpoint}" \
    --dataset "{dataset path}" \
    --output "{code dataset path}" \
    --batch-size 64 

We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the original dataset is stored in {dataset path}. The resulting dataset will be stored in {code dataset path}.

Training the transformer model

To train the models with the same hyper-parameters as in the paper, run the commands from the following sections based on the target dataset. We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the associated code dataset is located in {code dataset path}. All commands use 8 GPUs (in our case 8 NVIDIA A100 GPUs).

InteriorNet training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 20 \
    --n-loss-skip 4 \
    --batch-size 40 \
    --fp16 \
    --total-steps 200000 \
    --localization-weight 5. \
    --learning-rate 8e-5 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 1.

For the variant without localization, use --localization-weight 0. Similarly, for the variant without novel view synthesis, use --image-generation-weight 0.

CO3D finetuning

In order to finetune the model for 10 categories, use the following command:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 80 \
    --fp16 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 40000 \
    --epochs 40 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last). For the variant without localization, use --localization-weight 0.

For all categories and including localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --gradient-clip-val 1. \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

For all categories without localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

7-Scenes finetuning

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 5 \
    --pose-multiplier 5. \
    --batch-size 40 \
    --fp16 \
    --learning-rate 1e-5 \
    --job-dir .  \
    --total-steps 10000 \
    --epochs 10 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

ShapeNet finetuning

viewformer-cli train finetune-transformer \
    --dataset "{cars code dataset path},{chairs code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 1 \
    --pose-multiplier 1 \
    --n-loss-skip 1 \
    --sequence-size 4 \
    --batch-size 64 \
    --learning-rate 1e-4 \
    --gradient-clip-val 1 \
    --job-dir .  \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

SM7 training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 6 \
    --n-loss-skip 1 \
    --batch-size 128 \
    --fp16 \
    --total-steps 120000 \
    --localization-weight "cosine(0,1,120000)" \
    --learning-rate 1e-4 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 0.2

You can safely replace the cosine schedule for localization weight with a constant term.

Evaluation

Codebook evaluation

In order to evaluate the codebook model, run the following:

viewformer-cli evaluate codebook \
    --codebook-model "{codebook model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 64 \
    --image-size 128 \
    --num-store-images 0 \
    --num-eval-images 1000 \
    --job-dir . 

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

General transformer evaluation

In order to evaluate the transformer model, run the following:

viewformer-cli evaluate transformer \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Optionally, you can use --sequence-size to control the context size used for evaluation. Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

Transformer evaluation with different context sizes

In order to evaluate the transformer model with multiple context sizes, run the following:

viewformer-cli evaluate transformer-multictx \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

CO3D evaluation

In order to evaluate the transformer model on the CO3D dataset, run the following:

viewformer-cli evaluate \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original CO3D root}
    --job-dir . 

7-Scenes evaluation

In order to evaluate the transformer model on the 7-Scenes dataset, run the following:

viewformer-cli evaluate 7scenes \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original 7-Scenes root}
    --batch-size 1
    --job-dir .
    --num-store-images 0
    --top-n-matched-images 10
    --image-match-map {path to top10 matched images}

You can change --top-n-matched-images to 0 if you don't want to use top 10 closest images in the context. {path to top10 matched images} as a path to the file containing the map between most similar images from the test and the train sets. Each line is in the format {relative test image path} {relative train image path}.

Thanks

We would like to express our sincere gratitude to the authors of the following repositories, that we used in our code:

Owner
Jonáš Kulhánek
Jonáš Kulhánek
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023