🛠️ Tools for Transformers compression using Lightning ⚡

Overview

Hits

Bert-squeeze

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

It gathers a non-exhaustive list of techniques such as distillation, pruning, quantization, early-exiting. The repo is written using PyTorch Lightning and Transformers.

About the project

As a heavy user of transformer-based models (which are truly amazing from my point of view) I always struggled to put those heavy models in production while having a decent inference speed. There are of course a bunch of existing libraries to optimize and compress transformer-based models (ONNX , distiller, compressors , KD_Lib, ... ).
I started this project because of the need to reduce the latency of models integrating transformers as subcomponents. For this reason, this project aims at providing implementations to train various transformer-based models (and others) using PyTorch Lightning but also to distill, prune, and quantize models.
I chose to write this repo with Lightning because of its growing trend, its flexibility, and the very few repositories using it. It currently only handles sequence classification models, but support for other tasks and custom architectures is planned.

Installation

First download the repository:

git clone https://github.com/JulesBelveze/bert-squeeze.git

and then install dependencies using poetry:

poetry install

You are all set!

Quickstarts

You can find a bunch of already prepared configurations under the examples folder. Just choose the one you need and run the following:

python3 -m bert-squeeze.main -cp=examples -cn=wanted_config

Disclaimer: I have not extensively tested all procedures and thus do not guarantee the performance of every implemented method.

Concepts

Transformers

If you never heard of it then I can only recommend you to read this amazing blog post and if you want to dig deeper there is this awesome lecture was given by Stanford available here.

Distillation

The idea of distillation is to train a small network to mimic a big network by trying to replicate its outputs. The repository provides the ability to transfer knowledge from any model to any other (if you need a model that is not within the models folder just write your own).

The repository also provides the possibility to perform soft-distillation or hard-distillation on an unlabeled dataset. In the soft case, we use the probabilities of the teacher as a target. In the hard one, we assume that the teacher's predictions are the actual label.

You can find these implementations under the distillation/ folder.

Quantization

Neural network quantization is the process of reducing the weights precision in the neural network. The repo has two callbacks one for dynamic quantization and one for quantization-aware training (using the Lightning callback) .

You can find those implementations under the utils/callbacks/ folder.

Pruning

Pruning neural networks consist of removing weights from trained models to compress them. This repo features various pruning implementations and methods such as head-pruning, layer dropping, and weights dropping.

You can find those implementations under the utils/callbacks/ folder.

Contributions and questions

If you are missing a feature that could be relevant to this repo, or a bug that you noticed feel free to open a PR or open an issue. As you can see in the roadmap there are a bunch more features to come 😃

Also, if you have any questions or suggestions feel free to ask!

References

  1. Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
  2. stanfordonline (2021) Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 9 - Self- Attention and Transformers. [online video] Available at: https://www.youtube.com/watch?v=ptuGllU5SQQ
  3. Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Jamie Brew (2019). HuggingFace's Transformers: State-of-the-art Natural Language Processing
  4. Hassan Sajjad and Fahim Dalvi and Nadir Durrani and Preslav Nakov (2020). Poor Man's BERT Smaller and Faster Transformer Models
  5. Angela Fan and Edouard Grave and Armand Joulin (2019). Reducing Transformer Depth on Demand with Structured Dropout
  6. Paul Michel and Omer Levy and Graham Neubig (2019). Are Sixteen Heads Really Better than One?
  7. Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang (2020). Language-agnostic BERT Sentence Embedding
Owner
Jules Belveze
AI craftsman | NLP | MLOps
Jules Belveze
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022