Unified MultiWOZ evaluation scripts for the context-to-response task.

Overview

MultiWOZ Context-to-Response Evaluation

Standardized and easy to use Inform, Success, BLEU

~ See the paper ~

 


Easy-to-use scripts for standardized evaluation of response generation on the MultiWOZ benchmark. This repository contains an implementation of the MultiWOZ database with fuzzy matching, functions for normalization of slot names and values, and a careful implementation of the BLEU score and Inform & Succes rates.

🚀 Usage

Install the repository:

pip install git+https://github.com/Tomiinek/[email protected]

Use it directly from your code. Instantiate an evaluator and then call the evaluate method with dictionary of your predictions with a specific format (described later). Set bleu to evaluate the BLEU score, success to get the Success & Inform rate, and use richness for getting lexical richness metrics such as the number of unique unigrams, trigrams, token entropy, bigram conditional entropy, corpus MSTTR-50, and average turn length. Pseudo-code:

from mwzeval.metrics import Evaluator
...

e = Evaluator(bleu=True, success=False, richness=False)
my_predictions = {}
for item in data:
    my_predictions[item.dialog_id] = model.predict(item)
    ...
    
results = e.evaluate(my_predictions)
print(f"Epoch {epoch} BLEU: {results}")

Alternative usage:

git clone https://github.com/Tomiinek/MultiWOZ_Evaluation.git && cd MultiWOZ_Evaluation
pip install -r requirements.txt

And evaluate you predictions from the input file:

python evaluate.py [--bleu] [--success] [--richness] --input INPUT.json [--output OUTPUT.json]

Set the options --bleu, --success, and --richness as you wish.

Input format:

{
    "xxx0000" : [
        {
            "response": "Your generated delexicalized response.",
            "state": {
                "restaurant" : {
                    "food" : "eatable"
                }, ...
            }, 
            "active_domains": ["restaurant"]
        }, ...
    ], ...
}

The input to the evaluator should be a dictionary (or a .json file) with keys matching dialogue ids in the xxx0000 format (e.g. sng0073 instead of SNG0073.json), and values containing a list of turns. Each turn is a dictionary with keys:

  • response – Your generated delexicalized response. You can use either the slot names with domain names, e.g. restaurant_food, or the domain adaptive delexicalization scheme, e.g. food.

  • stateOptional, the predicted dialog state. If not present (for example in the case of policy optimization models), the ground truth dialog state from MultiWOZ 2.2 is used during the Inform & Success computation. Slot names and values are normalized prior the usage.

  • active_domainsOptional, list of active domains for the corresponding turn. If not present, the active domains are estimated from changes in the dialog state during the Inform & Success rate computation. If your model predicts the domain for each turn, place them here. If you use domains in slot names, run the following command to extract the active domains from slot names automatically:

    python add_slot_domains.py [-h] -i INPUT.json -o OUTPUT.json

See the predictions folder with examples.

Output format:

{
    "bleu" : {'damd': … , 'uniconv': … , 'hdsa': … , 'lava': … , 'augpt': … , 'mwz22': … },
    "success" : {
        "inform"  : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
        "success" : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
    },
    "richness" : {
        'entropy': … , 'cond_entropy': … , 'avg_lengths': … , 'msttr': … , 
        'num_unigrams': … , 'num_bigrams': … , 'num_trigrams': … 
    }
}

The evaluation script outputs a dictionary with keys bleu, success, and richness corresponding to BLEU, Inform & Success rates, and lexical richness metrics, respectively. Their values can be None if not evaluated, otherwise:

  • BLEU results contain multiple scores corresponding to different delexicalization styles and refernces. Currently included references are DAMD, HDSA, AuGPT, LAVA, UniConv, and MultiWOZ 2.2 whitch we consider to be the canonical one that should be reported in the future.
  • Inform & Succes rates are reported for each domain (i.e. attraction, restaurant, hotel, taxi, and train in case of the test set) separately and in total.
  • Lexical richness contains the number of distinct uni-, bi-, and tri-grams, average number of tokens in generated responses, token entropy, conditional bigram entropy, and MSTTR-50 calculated on concatenated responses.

Secret feature

You can use this code even for evaluation of dialogue state tracking (DST) on MultiWOZ 2.2. Set dst=True during initialization of the Evaluator to get joint state accuracy, slot precision, recall, and F1. Note that the resulting numbers are very different from the DST results in the original MultiWOZ evaluation. This is because we use slot name and value normalization, and careful fuzzy slot value matching.

🏆 Results

Please see the orginal MultiWOZ repository for the benchmark results.

👏 Contributing

  • If you would like to add your results, modify the particular table in the original reposiotry via a pull request, add the file with predictions into the predictions folder in this repository, and create another pull request here.
  • If you need to update the slot name mapping because of your different delexicalization style, feel free to make the changes, and create a pull request.
  • If you would like to improve normalization of slot values, add your new rules, and create a pull request.

💭 Citation

@inproceedings{nekvinda-dusek-2021-shades,
    title = "Shades of {BLEU}, Flavours of Success: The Case of {M}ulti{WOZ}",
    author = "Nekvinda, Tom{\'a}{\v{s}} and Du{\v{s}}ek, Ond{\v{r}}ej",
    booktitle = "Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.gem-1.4",
    doi = "10.18653/v1/2021.gem-1.4",
    pages = "34--46"
}

Owner
Tomáš Nekvinda
Wisdom giver, bacon & eggs master, ant lover
Tomáš Nekvinda
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022