Deploy recommendation engines with Edge Computing

Overview

License Activity Chat on Discord

RecoEdge: Bringing Recommendations to the Edge

A one stop solution to build your recommendation models, train them and, deploy them in a privacy preserving manner-- right on the users' devices.

RecoEdge integrate the phenomenal works by OpenMined and FedML to easily explore new federated learning algorithms and deploy them into production.

The steps to building an awesome recommendation system:

  1. 🔩 Standard ML training: Pick up any ML model and benchmark it using BaseTrainer
  2. 🎮 Federated Learning Simulation: Once you are satisfied with your model, explore a host of FL algorithms with FederatedWorker
  3. 🏭 Industrial Deployment: After all the testing and simulation, deploy easily using PySyft from OpenMined
  4. 🚀 Edge Computing: Integrate with NimbleEdge to improve FL training times by over 100x.

QuickStart

Let's train Facebook AI's DLRM on the edge. DLRM has been a standard baseline for all neural network based recommendation models.

Clone this repo and change the argument datafile in configs/dlrm.yml to the above path.

git clone https://github.com/NimbleEdge/RecoEdge
model :
  name : 'dlrm'
  ...
  preproc :
    datafile : "<Path to Criteo>/criteo/train.txt"
 

Install the dependencies with conda or pip

conda env create --name recoedge --file environment.yml
conda activate recoedge

Run data preprocessing with preprocess_data and supply the config file. You should be able to generate per-day split from the entire dataset as well a processed data file

python preprocess_data.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_1

Begin Training

python train.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_3 --num_eval_batches 1000 --devices 0

Run tensorboard to view training loss and validation metrics at localhost:8888

tensorboard --logdir $HOME/logs/kaggle_criteo --port 8888

Federated Training

This section is still work in progress. Reach out to us directly if you need help with FL deployment

Now we will simulate DLRM in federated setting. Create data split to mimic your users. We use Drichlet sampling for creating non-IID datasets for the model.


Adjust the parameters for distributed training like MPI in the config file

communications:
  gpu_map:
    host1: [0, 2]
    host2: [1, 0, 1]
    host3: [1, 1, 0, 1]
    host4: [0, 1, 0, 0, 0, 1, 0, 2]

Implement your own federated learning algorithm. In the demo we are using Federated Averaging. You just need to sub-class FederatedWorker and implement run() method.

@registry.load('fl_algo', 'fed_avg')
class FedAvgWorker(FederatedWorker):
    def __init__(self, ...):
        super().__init__(...)

    async def run(self):
        '''
            `Run` function updates the local model. 
            Implement this method to determine how the roles interact with each other to determine the final updated model.
            For example a worker which has both the `aggregator` and `trainer` roles might first train locally then run discounted `aggregate()` to get the fianl update model 


            In the following example,
            1. Aggregator requests models from the trainers before aggregating and updating its model.
            2. Trainer responds to aggregators' requests after updating its own model by local training.

            Since standard FL requires force updates from central entity before each cycle, trainers always start with global model/aggregator's model 

        '''
        assert role in self.roles, InvalidStateError("unknown role for worker")

        if role == 'aggregator':
            neighbours = await self.request_models_suspendable(self.sample_neighbours())
            weighted_params = self.aggregate(neighbours)
            self.update_model(weighted_params)
        elif role == 'trainer':
            # central server in this case
            aggregators = list(self.out_neighbours.values())
            global_models = await self.request_models_suspendable(aggregators)
            self.update_model(global_models[0])
            await self.train(model_dir=self.persistent_storage)
        self.round_idx += 1

    # Your aggregation strategy
    def aggregate(self, neighbour_ids):
        model_list = [
            (self.in_neighbours[id].sample_num, self.in_neighbours[id].model)
            for id in neighbour_ids
        ]
        (num0, averaged_params) = model_list[0]
        for k in averaged_params.keys():
            for i in range(0, len(model_list)):
                local_sample_number, local_model_params = model_list[i]
                w = local_sample_number / training_num
                if i == 0:
                    averaged_params[k] = local_model_params[k] * w
                else:
                    averaged_params[k] += local_model_params[k] * w

        return averaged_params

    # Your sampling strategy
    def sample_neighbours(self, round_idx, client_num_per_round):
        num_neighbours = len(self.in_neighbours)
        if num_neighbours == client_num_per_round:
            selected_neighbours = [
                neighbour for neighbour in self.in_neighbours]
        else:
            with RandomContext(round_idx):
                selected_neighbours = np.random.choice(
                    self.in_neighbours, min(client_num_per_round, num_neighbours), replace=False)
        logging.info("worker_indexes = %s" % str(selected_neighbours))
        return selected_neighbours

Begin FL simulation by

mpirun -np 20 python -m mpi4py.futures train_fl.py --num_workers 1000.

Deploy with PySyft

Customization

Training Configuration

There are two ways to adjust training hyper-parameters:

  • Set values in config/*.yml persistent settings which are necessary for reproducibility eg randomization seed
  • Pass them as CLI argument Good for non-persistent and dynamic settings like gpu device

In case of conflict, CLI argument supercedes config file parameter. For further reference, check out training config flags

Model Architecture

Adjusting DLRM model params

Any parameter needed to instantiate the pytorch module can be supplied by simply creating a key-value pair in the config file.

For example DLRM requires arch_feature_emb_size, arch_mlp_bot, etc

model: 
  name : 'dlrm'
  arch_sparse_feature_size : 16
  arch_mlp_bot : [13, 512, 256, 64]
  arch_mlp_top : [367, 256, 1]
  arch_interaction_op : "dot"
  arch_interaction_itself : False
  sigmoid_bot : "relu"
  sigmoid_top : "sigmoid"
  loss_function: "mse"

Adding new models

Model architecture can only be changed via configs/*.yml files. Every model declaration is tagged with an appropriate name and loaded into registry.

@registry.load('model','<model_name>')
class My_Model(torch.nn.Module):
    def __init__(num):
        ... 

You can define your own modules and add them in the fedrec/modules. Finally set the name flag of model tag in config file

model : 
  name : "<model name>"

Contribute

  1. Star, fork, and clone the repo.
  2. Do your work.
  3. Push to your fork.
  4. Submit a PR to NimbleEdge/RecoEdge

We welcome you to the Discord for queries related to the library and contribution in general.

Owner
NimbleEdge
An edge computing solution for all your needs
NimbleEdge
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022