Deploy recommendation engines with Edge Computing

Overview

License Activity Chat on Discord

RecoEdge: Bringing Recommendations to the Edge

A one stop solution to build your recommendation models, train them and, deploy them in a privacy preserving manner-- right on the users' devices.

RecoEdge integrate the phenomenal works by OpenMined and FedML to easily explore new federated learning algorithms and deploy them into production.

The steps to building an awesome recommendation system:

  1. 🔩 Standard ML training: Pick up any ML model and benchmark it using BaseTrainer
  2. 🎮 Federated Learning Simulation: Once you are satisfied with your model, explore a host of FL algorithms with FederatedWorker
  3. 🏭 Industrial Deployment: After all the testing and simulation, deploy easily using PySyft from OpenMined
  4. 🚀 Edge Computing: Integrate with NimbleEdge to improve FL training times by over 100x.

QuickStart

Let's train Facebook AI's DLRM on the edge. DLRM has been a standard baseline for all neural network based recommendation models.

Clone this repo and change the argument datafile in configs/dlrm.yml to the above path.

git clone https://github.com/NimbleEdge/RecoEdge
model :
  name : 'dlrm'
  ...
  preproc :
    datafile : "<Path to Criteo>/criteo/train.txt"
 

Install the dependencies with conda or pip

conda env create --name recoedge --file environment.yml
conda activate recoedge

Run data preprocessing with preprocess_data and supply the config file. You should be able to generate per-day split from the entire dataset as well a processed data file

python preprocess_data.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_1

Begin Training

python train.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_3 --num_eval_batches 1000 --devices 0

Run tensorboard to view training loss and validation metrics at localhost:8888

tensorboard --logdir $HOME/logs/kaggle_criteo --port 8888

Federated Training

This section is still work in progress. Reach out to us directly if you need help with FL deployment

Now we will simulate DLRM in federated setting. Create data split to mimic your users. We use Drichlet sampling for creating non-IID datasets for the model.


Adjust the parameters for distributed training like MPI in the config file

communications:
  gpu_map:
    host1: [0, 2]
    host2: [1, 0, 1]
    host3: [1, 1, 0, 1]
    host4: [0, 1, 0, 0, 0, 1, 0, 2]

Implement your own federated learning algorithm. In the demo we are using Federated Averaging. You just need to sub-class FederatedWorker and implement run() method.

@registry.load('fl_algo', 'fed_avg')
class FedAvgWorker(FederatedWorker):
    def __init__(self, ...):
        super().__init__(...)

    async def run(self):
        '''
            `Run` function updates the local model. 
            Implement this method to determine how the roles interact with each other to determine the final updated model.
            For example a worker which has both the `aggregator` and `trainer` roles might first train locally then run discounted `aggregate()` to get the fianl update model 


            In the following example,
            1. Aggregator requests models from the trainers before aggregating and updating its model.
            2. Trainer responds to aggregators' requests after updating its own model by local training.

            Since standard FL requires force updates from central entity before each cycle, trainers always start with global model/aggregator's model 

        '''
        assert role in self.roles, InvalidStateError("unknown role for worker")

        if role == 'aggregator':
            neighbours = await self.request_models_suspendable(self.sample_neighbours())
            weighted_params = self.aggregate(neighbours)
            self.update_model(weighted_params)
        elif role == 'trainer':
            # central server in this case
            aggregators = list(self.out_neighbours.values())
            global_models = await self.request_models_suspendable(aggregators)
            self.update_model(global_models[0])
            await self.train(model_dir=self.persistent_storage)
        self.round_idx += 1

    # Your aggregation strategy
    def aggregate(self, neighbour_ids):
        model_list = [
            (self.in_neighbours[id].sample_num, self.in_neighbours[id].model)
            for id in neighbour_ids
        ]
        (num0, averaged_params) = model_list[0]
        for k in averaged_params.keys():
            for i in range(0, len(model_list)):
                local_sample_number, local_model_params = model_list[i]
                w = local_sample_number / training_num
                if i == 0:
                    averaged_params[k] = local_model_params[k] * w
                else:
                    averaged_params[k] += local_model_params[k] * w

        return averaged_params

    # Your sampling strategy
    def sample_neighbours(self, round_idx, client_num_per_round):
        num_neighbours = len(self.in_neighbours)
        if num_neighbours == client_num_per_round:
            selected_neighbours = [
                neighbour for neighbour in self.in_neighbours]
        else:
            with RandomContext(round_idx):
                selected_neighbours = np.random.choice(
                    self.in_neighbours, min(client_num_per_round, num_neighbours), replace=False)
        logging.info("worker_indexes = %s" % str(selected_neighbours))
        return selected_neighbours

Begin FL simulation by

mpirun -np 20 python -m mpi4py.futures train_fl.py --num_workers 1000.

Deploy with PySyft

Customization

Training Configuration

There are two ways to adjust training hyper-parameters:

  • Set values in config/*.yml persistent settings which are necessary for reproducibility eg randomization seed
  • Pass them as CLI argument Good for non-persistent and dynamic settings like gpu device

In case of conflict, CLI argument supercedes config file parameter. For further reference, check out training config flags

Model Architecture

Adjusting DLRM model params

Any parameter needed to instantiate the pytorch module can be supplied by simply creating a key-value pair in the config file.

For example DLRM requires arch_feature_emb_size, arch_mlp_bot, etc

model: 
  name : 'dlrm'
  arch_sparse_feature_size : 16
  arch_mlp_bot : [13, 512, 256, 64]
  arch_mlp_top : [367, 256, 1]
  arch_interaction_op : "dot"
  arch_interaction_itself : False
  sigmoid_bot : "relu"
  sigmoid_top : "sigmoid"
  loss_function: "mse"

Adding new models

Model architecture can only be changed via configs/*.yml files. Every model declaration is tagged with an appropriate name and loaded into registry.

@registry.load('model','<model_name>')
class My_Model(torch.nn.Module):
    def __init__(num):
        ... 

You can define your own modules and add them in the fedrec/modules. Finally set the name flag of model tag in config file

model : 
  name : "<model name>"

Contribute

  1. Star, fork, and clone the repo.
  2. Do your work.
  3. Push to your fork.
  4. Submit a PR to NimbleEdge/RecoEdge

We welcome you to the Discord for queries related to the library and contribution in general.

Owner
NimbleEdge
An edge computing solution for all your needs
NimbleEdge
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022