Deploy recommendation engines with Edge Computing

Overview

License Activity Chat on Discord

RecoEdge: Bringing Recommendations to the Edge

A one stop solution to build your recommendation models, train them and, deploy them in a privacy preserving manner-- right on the users' devices.

RecoEdge integrate the phenomenal works by OpenMined and FedML to easily explore new federated learning algorithms and deploy them into production.

The steps to building an awesome recommendation system:

  1. 🔩 Standard ML training: Pick up any ML model and benchmark it using BaseTrainer
  2. 🎮 Federated Learning Simulation: Once you are satisfied with your model, explore a host of FL algorithms with FederatedWorker
  3. 🏭 Industrial Deployment: After all the testing and simulation, deploy easily using PySyft from OpenMined
  4. 🚀 Edge Computing: Integrate with NimbleEdge to improve FL training times by over 100x.

QuickStart

Let's train Facebook AI's DLRM on the edge. DLRM has been a standard baseline for all neural network based recommendation models.

Clone this repo and change the argument datafile in configs/dlrm.yml to the above path.

git clone https://github.com/NimbleEdge/RecoEdge
model :
  name : 'dlrm'
  ...
  preproc :
    datafile : "<Path to Criteo>/criteo/train.txt"
 

Install the dependencies with conda or pip

conda env create --name recoedge --file environment.yml
conda activate recoedge

Run data preprocessing with preprocess_data and supply the config file. You should be able to generate per-day split from the entire dataset as well a processed data file

python preprocess_data.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_1

Begin Training

python train.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_3 --num_eval_batches 1000 --devices 0

Run tensorboard to view training loss and validation metrics at localhost:8888

tensorboard --logdir $HOME/logs/kaggle_criteo --port 8888

Federated Training

This section is still work in progress. Reach out to us directly if you need help with FL deployment

Now we will simulate DLRM in federated setting. Create data split to mimic your users. We use Drichlet sampling for creating non-IID datasets for the model.


Adjust the parameters for distributed training like MPI in the config file

communications:
  gpu_map:
    host1: [0, 2]
    host2: [1, 0, 1]
    host3: [1, 1, 0, 1]
    host4: [0, 1, 0, 0, 0, 1, 0, 2]

Implement your own federated learning algorithm. In the demo we are using Federated Averaging. You just need to sub-class FederatedWorker and implement run() method.

@registry.load('fl_algo', 'fed_avg')
class FedAvgWorker(FederatedWorker):
    def __init__(self, ...):
        super().__init__(...)

    async def run(self):
        '''
            `Run` function updates the local model. 
            Implement this method to determine how the roles interact with each other to determine the final updated model.
            For example a worker which has both the `aggregator` and `trainer` roles might first train locally then run discounted `aggregate()` to get the fianl update model 


            In the following example,
            1. Aggregator requests models from the trainers before aggregating and updating its model.
            2. Trainer responds to aggregators' requests after updating its own model by local training.

            Since standard FL requires force updates from central entity before each cycle, trainers always start with global model/aggregator's model 

        '''
        assert role in self.roles, InvalidStateError("unknown role for worker")

        if role == 'aggregator':
            neighbours = await self.request_models_suspendable(self.sample_neighbours())
            weighted_params = self.aggregate(neighbours)
            self.update_model(weighted_params)
        elif role == 'trainer':
            # central server in this case
            aggregators = list(self.out_neighbours.values())
            global_models = await self.request_models_suspendable(aggregators)
            self.update_model(global_models[0])
            await self.train(model_dir=self.persistent_storage)
        self.round_idx += 1

    # Your aggregation strategy
    def aggregate(self, neighbour_ids):
        model_list = [
            (self.in_neighbours[id].sample_num, self.in_neighbours[id].model)
            for id in neighbour_ids
        ]
        (num0, averaged_params) = model_list[0]
        for k in averaged_params.keys():
            for i in range(0, len(model_list)):
                local_sample_number, local_model_params = model_list[i]
                w = local_sample_number / training_num
                if i == 0:
                    averaged_params[k] = local_model_params[k] * w
                else:
                    averaged_params[k] += local_model_params[k] * w

        return averaged_params

    # Your sampling strategy
    def sample_neighbours(self, round_idx, client_num_per_round):
        num_neighbours = len(self.in_neighbours)
        if num_neighbours == client_num_per_round:
            selected_neighbours = [
                neighbour for neighbour in self.in_neighbours]
        else:
            with RandomContext(round_idx):
                selected_neighbours = np.random.choice(
                    self.in_neighbours, min(client_num_per_round, num_neighbours), replace=False)
        logging.info("worker_indexes = %s" % str(selected_neighbours))
        return selected_neighbours

Begin FL simulation by

mpirun -np 20 python -m mpi4py.futures train_fl.py --num_workers 1000.

Deploy with PySyft

Customization

Training Configuration

There are two ways to adjust training hyper-parameters:

  • Set values in config/*.yml persistent settings which are necessary for reproducibility eg randomization seed
  • Pass them as CLI argument Good for non-persistent and dynamic settings like gpu device

In case of conflict, CLI argument supercedes config file parameter. For further reference, check out training config flags

Model Architecture

Adjusting DLRM model params

Any parameter needed to instantiate the pytorch module can be supplied by simply creating a key-value pair in the config file.

For example DLRM requires arch_feature_emb_size, arch_mlp_bot, etc

model: 
  name : 'dlrm'
  arch_sparse_feature_size : 16
  arch_mlp_bot : [13, 512, 256, 64]
  arch_mlp_top : [367, 256, 1]
  arch_interaction_op : "dot"
  arch_interaction_itself : False
  sigmoid_bot : "relu"
  sigmoid_top : "sigmoid"
  loss_function: "mse"

Adding new models

Model architecture can only be changed via configs/*.yml files. Every model declaration is tagged with an appropriate name and loaded into registry.

@registry.load('model','<model_name>')
class My_Model(torch.nn.Module):
    def __init__(num):
        ... 

You can define your own modules and add them in the fedrec/modules. Finally set the name flag of model tag in config file

model : 
  name : "<model name>"

Contribute

  1. Star, fork, and clone the repo.
  2. Do your work.
  3. Push to your fork.
  4. Submit a PR to NimbleEdge/RecoEdge

We welcome you to the Discord for queries related to the library and contribution in general.

Owner
NimbleEdge
An edge computing solution for all your needs
NimbleEdge
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021