Sentinel-1 vessel detection model used in the xView3 challenge

Overview

sar_vessel_detect

Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR images. See whitepaper.pdf for a summary of our approach.

Dependencies

Install dependiences using conda:

cd sar_vessel_detect/
conda env create -f environment.yml

Pre-processing

First, ensure that training and validation scenes are extracted to the same directory, e.g. /xview3/all/images/. The training and validation labels should be concatenated and written to a CSV file like /xview3/all/labels.csv.

Prior to training, the large scenes must be split up into 800x800 windows (chips). Set paths and parameters in data/configs/chipping_config.txt, and then run:

cd sar_vessel_detect/src/
python -m xview3.processing.preprocessing ../data/configs/chipping_config.txt

Initial Training

We first train a model on the 50 xView3-Validation scenes only. We will apply this model in the xView3-Train scenes, and incorporate high-confidence predictions as additional labels. This is because xView3-Train scenes are not comprehensively labeled since most labels are derived automatically from AIS tracks.

To train, set paths and parameters in data/configs/initial.txt, and then run:

python -m xview3.training.train ../data/configs/initial.txt

Apply the trained model in xView3-Train, and incorporate high-confidence predictions as additional labels:

python -m xview3.infer.inference --image_folder /xview3/all/images/ --weights ../data/models/initial/best.pth --output out.csv --config_path ../data/configs/initial.txt --padding 400 --window_size 3072 --overlap 20 --scene_path ../data/splits/xview-train.txt
python -m xview3.eval.prune --in_path out.csv --out_path out-conf80.csv --conf 0.8
python -m xview3.misc.pred2label out-conf80.csv /xview3/all/chips/ out-conf80-tolabel.csv
python -m xview3.misc.pred2label_concat /xview3/all/chips/chip_annotations.csv out-conf80-tolabel.csv out-conf80-tolabel-concat.csv
python -m xview3.eval.prune --in_path out-conf80-tolabel-concat.csv --out_path out-conf80-tolabel-concat-prune.csv --nms 10
python -m xview3.misc.pred2label_fixlow out-conf80-tolabel-concat-prune.csv
python -m xview3.misc.pred2label_drop out-conf80-tolabel-concat-prune.csv out.csv out-conf80-tolabel-concat-prune-drop.csv
mv out-conf80-tolabel-concat-prune-drop.csv ../data/xval1b-conf80-concat-prune-drop.csv

Final Training

Now we can train the final object detection model. Set paths and parameters in data/configs/final.txt, and then run:

python -m xview3.training.train ../data/configs/final.txt

Attribute Prediction

We use a separate model to predict is_vessel, is_fishing, and vessel length.

python -m xview3.postprocess.v2.make_csv /xview3/all/chips/chip_annotations.csv out.csv ../data/splits/our-train.txt /xview3/postprocess/labels.csv
python -m xview3.postprocess.v2.get_boxes /xview3/postprocess/labels.csv /xview3/all/chips/ /xview3/postprocess/boxes/
python -m xview3.postprocess.v2.train /xview3/postprocess/model.pth /xview3/postprocess/labels.csv /xview3/postprocess/boxes/

Inference

Suppose that test images are in a directory like /xview3/test/images/. First, apply the object detector:

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.eval.prune --in_path out.csv --out_path out-prune.csv --nms 10

Now apply the attribute prediction model:

python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-prune.csv /xview3/test/chips/ out-prune-attribute.csv attribute

Test-time Augmentation

We employ test-time augmentation in our final submission, which we find provides a small 0.5% performance improvement.

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-1.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-2.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-3.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --flipud True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-4.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True --flipud True
python -m xview3.eval.ensemble out-1.csv out-2.csv out-3.csv out-4.csv out-tta.csv
python -m xview3.eval.prune --in_path out-tta.csv --out_path out-tta-prune.csv --nms 10
python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-tta-prune.csv /xview3/test/chips/ out-tta-prune-attribute.csv attribute

Confidence Threshold

We tune the confidence threshold on the validation set. Repeat the inference steps with test-time augmentation on the our-validation.txt split to get out-validation-tta-prune-attribute.csv. Then:

python -m xview3.eval.metric --label_file /xview3/all/chips/chip_annotations.csv --scene_path ../data/splits/our-validation.txt --costly_dist --drop_low_detect --inference_file out-validation-tta-prune-attribute.csv --threshold -1
python -m xview3.eval.prune --in_path out-tta-prune-attribute.csv --out_path submit.csv --conf 0.3 # Change to the best confidence threshold.

Inquiries

For inquiries, please open a Github issue.

CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022