Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

Overview

PremiershipPlayerAnalysis

Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. Note : My understanding is the squad data on this site can change at any time so your results might be different

Improvement : Calculate age to finer degree than just years

The was developed in Jupyter Notebook and this walkthrough willl assume you are doing the same

Once you have ran the scraping

original = pd.DataFrame(playersList) # Convert the data scraped into a Pandas DataFrame 

original.to_csv('premiershipplayers.csv') # Keep a back up of the data to save time later if required 

df2 = original.copy() # Working copy of the DataFrame (just in case) 


df2.info()


   
    
RangeIndex: 578 entries, 0 to 577
Data columns (total 11 columns):
 #   Column       Non-Null Count  Dtype 
---  ------       --------------  ----- 
 0   club         578 non-null    object
 1   name         578 non-null    object
 2   shirtNo      572 non-null    object
 3   nationality  562 non-null    object
 4   dob          562 non-null    object
 5   height       500 non-null    object
 6   weight       474 non-null    object
 7   appearances  578 non-null    object
 8   goals        578 non-null    object
 9   wins         578 non-null    object
 10  losses       578 non-null    object
dtypes: object(11)
memory usage: 49.8+ KB

   

*** A total of 578 player. ***

6 without shirt number

16 without nationality listed

16 without dob listed

78 without height listed

104 without weight listed

Cleanup Data

  1. Remove spaces and newline from dob, appearances, goals, wins and losses columns

  2. Change type of dob to date

  3. change type of appearances, goals, wins, losses to int

     df2['dob'] = df2['dob'].str.replace('\n','').str.strip(' ')
     df2['appearances'] = df2['appearances'].str.replace('\n','').str.strip(' ')
     df2['goals'] = df2['goals'].str.replace('\n','').str.strip(' ')
     df2['wins'] = df2['wins'].str.replace('\n','').str.strip(' ')
     df2['losses'] = df2['losses'].str.replace('\n','').str.strip(' ')
    
     # change type of dob, appearances, goals, wins, losses
     from datetime import  date
    
     df2['dob'] = pd.to_datetime(df2['dob'],format='%d/%m/%Y').dt.date
     df2["appearances"] = pd.to_numeric(df2["appearances"])
     df2["goals"] = pd.to_numeric(df2["goals"])
     df2["wins"] = pd.to_numeric(df2["wins"])
     df2["losses"] = pd.to_numeric(df2["losses"])
     df2['height'] = df2['height'].str[:-2]
     df2["height"] = pd.to_numeric(df2["height"])
     
     
     # Create age column
    
     today = date.today()
    
     def age(born):
         if born:
             return today.year - born.year - ((today.month, 
                                           today.day) < (born.month, 
                                                         born.day))
         else:
             return np.nan
    
     df2['age'] = df2['dob'].apply(age)
    

10 Oldest Players

    df2.sort_values('age',ascending=False).head(10)

image

10 Youngest Players

    df2.sort_values('age',ascending=True).head(10)

image

Squad Sizes

    df2.groupby(['club'])['club'].count().sort_values(ascending=False)

image

Team's Average Player Age

    plt.ylim([20, 30])
    df2.groupby(['club'])['age'].mean().sort_values(ascending=False).plot.bar()

image

Burnley appear to not only have one of the highest average player ages but also the owest number of registered players

Top 10 Premiership Appearances

    df2.sort_values('appearances',ascending=False).head(10)

image

Collective Premiership Appearances per Club

    df2.groupby(['club'])['appearances'].sum().sort_values(ascending=False)

image

    df2.groupby(['club'])['appearances'].sum().sort_values(ascending=False).plot.bar()

image

10 Tallest Playes

    df2.sort_values('height',ascending=False).head(10)

image

10 Shortest Playes

    df2.sort_values('height',ascending=True).head(10)

image

Nationality totals of Players

    pd.set_option('display.max_rows', 100)
    df.groupby(['nationality'])['club'].count().sort_values(ascending=False)

Nationality totals per club

    pd.set_option('display.max_rows', 500)
    df.groupby(['club','nationality'])['nationality'].count()
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Renato 214 Jan 02, 2023
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023