A look-ahead multi-entity Transformer for modeling coordinated agents.

Overview

baller2vec++

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents. arXiv. 2021.

To learn statistically dependent agent trajectories, baller2vec++ uses a specially designed self-attention mask to simultaneously process three different sets of features vectors in a single Transformer. The three sets of feature vectors consist of location feature vectors like those found in baller2vec, look-ahead trajectory feature vectors, and starting location feature vectors. This design allows the model to integrate information about concurrent agent trajectories through multiple Transformer layers without seeing the future (in contrast to baller2vec).
Training sample baller2vec baller2vec++

When trained on a dataset of perfectly coordinated agent trajectories, the trajectories generated by baller2vec are completely uncoordinated while the trajectories generated by baller2vec++ are perfectly coordinated.

Ground truth baller2vec baller2vec baller2vec
Ground truth baller2vec++ baller2vec++ baller2vec++

While baller2vec occasionally generates realistic trajectories for the red defender, it also makes egregious errors. In contrast, the trajectories generated by baller2vec++ often seem plausible. The red player was placed last in the player order when generating his trajectory with baller2vec++.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={\texttt{baller2vec++}: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:2104.11980},
   year={2021}
}

Training baller2vec++

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

JOB=$(date +%Y%m%d%H%M%S)

echo "train:" >> ${JOB}.yaml
task=basketball  # "basketball" or "toy".
echo "  task: ${task}" >> ${JOB}.yaml
if [[ "$task" = "basketball" ]]
then

    echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
    echo "  train_prop: 0.95" >> ${JOB}.yaml
    echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
    echo "  valid_samples: 1000" >> ${JOB}.yaml
    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
    echo "  patience: 20" >> ${JOB}.yaml

    echo "dataset:" >> ${JOB}.yaml
    echo "  hz: 5" >> ${JOB}.yaml
    echo "  secs: 4.2" >> ${JOB}.yaml
    echo "  player_traj_n: 11" >> ${JOB}.yaml
    echo "  max_player_move: 4.5" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
    echo "  nhead: 8" >> ${JOB}.yaml
    echo "  dim_feedforward: 2048" >> ${JOB}.yaml
    echo "  num_layers: 6" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: False" >> ${JOB}.yaml

else

    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-4" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [64, 128]" >> ${JOB}.yaml
    echo "  nhead: 4" >> ${JOB}.yaml
    echo "  dim_feedforward: 512" >> ${JOB}.yaml
    echo "  num_layers: 2" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: True" >> ${JOB}.yaml

fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vecplusplus.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022