A look-ahead multi-entity Transformer for modeling coordinated agents.

Overview

baller2vec++

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents. arXiv. 2021.

To learn statistically dependent agent trajectories, baller2vec++ uses a specially designed self-attention mask to simultaneously process three different sets of features vectors in a single Transformer. The three sets of feature vectors consist of location feature vectors like those found in baller2vec, look-ahead trajectory feature vectors, and starting location feature vectors. This design allows the model to integrate information about concurrent agent trajectories through multiple Transformer layers without seeing the future (in contrast to baller2vec).
Training sample baller2vec baller2vec++

When trained on a dataset of perfectly coordinated agent trajectories, the trajectories generated by baller2vec are completely uncoordinated while the trajectories generated by baller2vec++ are perfectly coordinated.

Ground truth baller2vec baller2vec baller2vec
Ground truth baller2vec++ baller2vec++ baller2vec++

While baller2vec occasionally generates realistic trajectories for the red defender, it also makes egregious errors. In contrast, the trajectories generated by baller2vec++ often seem plausible. The red player was placed last in the player order when generating his trajectory with baller2vec++.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={\texttt{baller2vec++}: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:2104.11980},
   year={2021}
}

Training baller2vec++

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

JOB=$(date +%Y%m%d%H%M%S)

echo "train:" >> ${JOB}.yaml
task=basketball  # "basketball" or "toy".
echo "  task: ${task}" >> ${JOB}.yaml
if [[ "$task" = "basketball" ]]
then

    echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
    echo "  train_prop: 0.95" >> ${JOB}.yaml
    echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
    echo "  valid_samples: 1000" >> ${JOB}.yaml
    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
    echo "  patience: 20" >> ${JOB}.yaml

    echo "dataset:" >> ${JOB}.yaml
    echo "  hz: 5" >> ${JOB}.yaml
    echo "  secs: 4.2" >> ${JOB}.yaml
    echo "  player_traj_n: 11" >> ${JOB}.yaml
    echo "  max_player_move: 4.5" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
    echo "  nhead: 8" >> ${JOB}.yaml
    echo "  dim_feedforward: 2048" >> ${JOB}.yaml
    echo "  num_layers: 6" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: False" >> ${JOB}.yaml

else

    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-4" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [64, 128]" >> ${JOB}.yaml
    echo "  nhead: 4" >> ${JOB}.yaml
    echo "  dim_feedforward: 512" >> ${JOB}.yaml
    echo "  num_layers: 2" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: True" >> ${JOB}.yaml

fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vecplusplus.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022