Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Overview

Feature Engine

PythonVersion PyPI version License https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md CircleCI https://app.circleci.com/pipelines/github/feature-engine/feature_engine?branch=master Documentation Status https://feature-engine.readthedocs.io/en/latest/index.html Join the chat at https://gitter.im/feature_engine/community Sponsorship https://www.trainindata.com/ Downloads Downloads Conda https://anaconda.org/conda-forge/feature_engine

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.

Feature-engine features in the following resources:

Blogs about Feature-engine:

Documentation

En Español:

More resources will be added as they appear online!

Current Feature-engine's transformers include functionality for:

  • Missing Data Imputation
  • Categorical Variable Encoding
  • Outlier Capping or Removal
  • Discretisation
  • Numerical Variable Transformation
  • Variable Creation
  • Variable Selection
  • Scikit-learn Wrappers

Imputing Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddMissingIndicator
  • CategoricalImputer
  • ArbitraryNumberImputer
  • DropMissingData

Encoding Methods

  • OneHotEncoder
  • OrdinalEncoder
  • CountFrequencyEncoder
  • MeanEncoder
  • WoEEncoder
  • PRatioEncoder
  • RareLabelEncoder
  • DecisionTreeEncoder

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • DecisionTreeDiscretiser
  • ArbitraryDiscreriser

Variable Transformation methods

  • LogTransformer
  • LogCpTransformer
  • ReciprocalTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Scikit-learn Wrapper:

  • SklearnTransformerWrapper

Variable Creation:

  • MathematicalCombination
  • CombineWithReferenceFeature
  • CyclicalTransformer

Feature Selection:

  • DropFeatures
  • DropConstantFeatures
  • DropDuplicateFeatures
  • DropCorrelatedFeatures
  • SmartCorrelationSelection
  • ShuffleFeaturesSelector
  • SelectBySingleFeaturePerformance
  • SelectByTargetMeanPerformance
  • RecursiveFeatureElimination
  • RecursiveFeatureAddition

Installing

From PyPI using pip:

pip install feature_engine

From Anaconda:

conda install -c conda-forge feature_engine

Or simply clone it:

git clone https://github.com/feature-engine/feature_engine.git

Usage

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

See more usage examples in the Jupyter Notebooks in the example folder of this repository, or in the documentation.

Contributing

Details about how to contribute can be found in the Contributing Page

In short:

Local Setup Steps

  • Fork the repo
  • Clone your fork into your local computer: git clone https://github.com/ /feature_engine.git
  • cd into the repo cd feature_engine
  • Install as a developer: pip install -e .
  • Create and activate a virtual environment with any tool of choice
  • Install the dependencies as explained in the Contributing Page
  • Create a feature branch with a meaningful name for your feature: git checkout -b myfeaturebranch
  • Develop your feature, tests and documentation
  • Make sure the tests pass
  • Make a PR

Thank you!!

Opening Pull Requests

PR's are welcome! Please make sure the CI tests pass on your branch.

Tests

We prefer tox. In your environment:

  • Run pip install tox
  • cd into the root directory of the repo: cd feature_engine
  • Run tox

If the tests pass, the code is functional.

You can also run the tests in your environment (without tox). For guidelines on how to do so, check the Contributing Page.

Documentation

Feature-engine documentation is built using Sphinx and is hosted on Read the Docs.

To build the documentation make sure you have the dependencies installed. From the root directory: pip install -r docs/requirements.txt.

Now you can build the docs: sphinx-build -b html docs build

License

BSD 3-Clause

References

Many of the engineering and encoding functionalities are inspired by this series of articles from the 2009 KDD Competition.

Owner
Soledad Galli
Data scientist, open-source developer, book author and machine learning instructor. Creator and maintainer of Feature-engine.
Soledad Galli
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022