This repository contains the files for running the Patchify GUI.

Overview

Repository Name >> Train-Test-Validation-Dataset-Generation

App Name >> Patchify

Description >> This app is designed for crop images and creating small patches of a large image e.g. Satellite/Aerial Images, which will then be used for training and testing Deep Learning models specifically semantic segmentation models.

Functionalities: Patchify is capable of:

  • Crop the large image into small patches based on the user-defined patch window-size and patch stride/step independently in two x and y directions.
  • Augmenting the cropped dataset to expand the size of the training dataset and make the model to improve the model performance with better generalizing for unseen samples.
  • Dividing the created dataset into different Train, Test, and Validation dataset with user defined percentages.

A picture of Patchify App is shown below:

Parameters:

  • Input Image: is the input large image need to be cropped into small patches. It can be whether raster or its label image. (The produced results will in the same format as the input image)

  • Export Folder: is the directory for saving the generated cropped patches.

  • Window Size: is the size of the cropping window which is equal to the size of the generated small patches. (X is the patch/cropped images' length in X direction and Y is their length in Y direction.)

  • Stride: is the step size of the moving window for generating the patches. It can move in different step sizes in X and Y directions.

  • Output name: is the constant part of the generated patches' name.

  • Training Percentage: is the percentage of Total generated patches goes into Training Dataset.

  • Testing Percentage: is the percentage of Total generated patches goes into Testing Dataset.

  • Validation Percentage: is the percentage of Total generated patches goes into Validation Dataset.

  • Original Image: is the original version of the cropped patch at the location of moving/sliding window.

  • Rotate 90 Degrees: is the version of original image rotated 90 degrees clockwise.

  • Rotate 180 Degrees: is the version of original image rotated 180 degrees clockwise.

  • Rotate 270 Degrees: is the version of original image rotated 270 degrees clockwise.

  • Flip Vertically: is the version of original image flipped vertically.

  • Flip Horizontally: is the version of original image flipped horizontally.

  • Flip Verticall and Horizontally: is the version of original image flipped both vertically and horizontally .

  • Start Patching: starts the patching operations based on the selected parameters.

  • Cancel: is the button for stopping the patching operations and/or closing the Patchify App.

  • Augmentation section has two buttoms. All button selects all the augmentation methods. In case a different format should be checked manually, the Custom Selection can be selected.

Important Notes:

  • if none of the Train, Testing, Validation percentages is filled, Then the Results will only produce Total cropped patches and the dataset spliting section won't run.
  • Make sure you have selected an image, the destination folder for storing and the generated patch name before pressing "Start Patchify" button.

Implementation:

patchify.py is the only file you need to run. But before make sure you have installed all the required python libraries including opencv, PyQt5. Be sure to use the latest version of pip along with python 3.7

Owner
Salar Ghaffarian
Remote Sensing and GIScientist - MSc in Geomatics Engineering - I am specialist in using Deep learning, Computer vision, and machine learning methods.
Salar Ghaffarian
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023