Data stream analytics: Implement online learning methods to address concept drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" accepted in IEEE GlobeCom 2021.

Overview

PWPAE-Concept-Drift-Detection-and-Adaptation

This is the code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" published in 2021 IEEE Global Communications Conference (GLOBECOM).
Authors: Li Yang, Dimitrios Michael Manias, and Abdallah Shami
Organization: The Optimized Computing and Communications (OC2) Lab, ECE Department, Western University

This repository also introduces concept drift definitions and online machine learning methods for data stream analytics using the River library.

Another tutorial code for concept drift, online machine learning, and data stream analytics can be found in: OASW-Concept-Drift-Detection-and-Adaptation

Concept Drift

In non-stationary and dynamical environments, such as IoT environments, the distribution of input data often changes over time, known as concept drift. The occurrence of concept drift will result in the performance degradation of the current trained data analytics model. Traditional offline machine learning (ML) models cannot deal with concept drift, making it necessary to develop online adaptive analytics models that can adapt to the predictable and unpredictable changes in data streams.

To address concept drift, effective methods should be able to detect concept drift and adapt to the changes accordingly. Therefore, concept drift detection and adaptation are the two major steps for online learning on data streams.

Drift Detection

  • Adaptive Windowing (ADWIN) is a distribution-based method that uses an adaptive sliding window to detect concept drift based on data distribution changes. ADWIN identifies concept drift by calculating and analyzing the average of certain statistics over the two sub-windows of the adaptive window. The occurrence of concept drift is indicated by a large difference between the averages of the two sub-windows. Once a drift point is detected, all the old data samples before that drift time point are discarded.

    • Albert Bifet and Ricard Gavalda. "Learning from time-changing data with adaptive windowing." In Proceedings of the 2007 SIAM international conference on data mining, pp. 443-448. Society for Industrial and Applied Mathematics, 2007.
    from river.drift import ADWIN
    adwin = ADWIN()
  • Drift Detection Method (DDM) is a popular model performance-based method that defines two thresholds, a warning level and a drift level, to monitor model's error rate and standard deviation changes for drift detection.

    • João Gama, Pedro Medas, Gladys Castillo, Pedro Pereira Rodrigues: Learning with Drift Detection. SBIA 2004: 286-295
    from river.drift import DDM
    ddm = DDM()

Drift Adaptation

  • Hoeffding tree (HT) is a type of decision tree (DT) that uses the Hoeffding bound to incrementally adapt to data streams. Compared to a DT that chooses the best split, the HT uses the Hoeffding bound to calculate the number of necessary samples to select the split node. Thus, the HT can update its node to adapt to newly incoming samples.

    • G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD’01, pages 97–106, San Francisco, CA, 2001. ACM Press.
    from river import tree
    model = tree.HoeffdingTreeClassifier(
         grace_period=100,
         split_confidence=1e-5,
         ...
    )
  • Extremely Fast Decision Tree (EFDT), also named Hoeffding Anytime Tree (HATT), is an improved version of the HT that splits nodes as soon as it reaches the confidence level instead of detecting the best split in the HT.

    • C. Manapragada, G. Webb, and M. Salehi. Extremely Fast Decision Tree. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '18). ACM, New York, NY, USA, 1953-1962, 2018.
    from river import tree
    model = tree.ExtremelyFastDecisionTreeClassifier(
         grace_period=100,
         split_confidence=1e-5,
         min_samples_reevaluate=100,
         ...
     )
  • Adaptive random forest (ARF) algorithm uses HTs as base learners and ADWIN as the drift detector for each tree to address concept drift. Through the drift detection process, the poor-performing base trees are replaced by new trees to fit the new concept.

    • Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfharinger, Geoff Holmes, Talel Abdessalem. Adaptive random forests for evolving data stream classification. In Machine Learning, DOI: 10.1007/s10994-017-5642-8, Springer, 2017.
    from river import ensemble
    model = ensemble.AdaptiveRandomForestClassifier(
         n_models=3,
         drift_detector=ADWIN(),
         ...
     )
  • Streaming Random Patches (SRP) uses the similar technology of ARF, but it uses the global subspace randomization strategy, instead of the local subspace randomization technique used by ARF. The global subspace randomization is a more flexible method that improves the diversity of base learners.

    • Heitor Murilo Gomes, Jesse Read, Albert Bifet. Streaming Random Patches for Evolving Data Stream Classification. IEEE International Conference on Data Mining (ICDM), 2019.
    from river import ensemble
    base_model = tree.HoeffdingTreeClassifier(
       grace_period=50, split_confidence=0.01,
       ...
     )
    model = ensemble.SRPClassifier(
       model=base_model, n_models=3, drift_detector=ADWIN(),
       ...
    )
  • Leverage bagging (LB) is another popular online ensemble that uses bootstrap samples to construct base learners. It uses Poisson distribution to increase the data diversity and leverage the bagging performance.

    • Bifet A., Holmes G., Pfahringer B. (2010) Leveraging Bagging for Evolving Data Streams. In: Balcázar J.L., Bonchi F., Gionis A., Sebag M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol 6321. Springer, Berlin, Heidelberg.
    from river import ensemble
    from river import linear_model
    from river import preprocessing
    model = ensemble.LeveragingBaggingClassifier(
       model=(
           preprocessing.StandardScaler() |
           linear_model.LogisticRegression()
       ),
       n_models=3,
       ...
    )

Abstract of The Paper

As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack detection failure. This is because traditional data analytics models are static models that cannot adapt to data distribution changes. In this paper, we propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics. Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.

Implementation

Online Learning/Concept Drift Adaptation Algorithms

  • Adaptive Random Forest (ARF)
  • Streaming Random Patches (SRP)
  • Extremely Fast Decision Tree (EFDT)
  • Hoeffding Tree (HT)
  • Leveraging Bagging (LB)
  • Performance Weighted Probability Averaging Ensemble (PWPAE)
    • Proposed Method

Drift Detection Algorithms

  • Adaptive Windowing (ADWIN)
  • Drift Detection Method (DDM)

Dataset

  1. IoTID20 dataset, a novel IoT botnet dataset

  2. CICIDS2017 dataset, a popular network traffic dataset for intrusion detection problems

For the purpose of displaying the experimental results in Jupyter Notebook, the sampled subsets of the two datasets are used in the sample code. The subsets are in the "data" folder.

Code

Requirements & Libraries

Contact-Info

Please feel free to contact us for any questions or cooperation opportunities. We will be happy to help.

Citation

If you find this repository useful in your research, please cite this article as:

L. Yang, D. M. Manias, and A. Shami, “PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams,” in 2021 IEEE Glob. Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 2021.

@INPROCEEDINGS{9685338,
  author={Yang, Li and Manias, Dimitrios Michael and Shami, Abdallah},
  booktitle={2021 IEEE Global Communications Conference (GLOBECOM)}, 
  title={PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams}, 
  year={2021},
  pages={1-6},
  doi={10.1109/GLOBECOM46510.2021.9685338}
  }
Owner
Western OC2 Lab
The Optimized Computing and Communications (OC2) Laboratory within the Department of Electrical and Computer Engineering at Western University, London, Canada.
Western OC2 Lab
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022