Translate - a PyTorch Language Library

Overview

NOTE

PyTorch Translate is now deprecated, please use fairseq instead.


Translate - a PyTorch Language Library

Translate is a library for machine translation written in PyTorch. It provides training for sequence-to-sequence models. Translate relies on fairseq, a general sequence-to-sequence library, which means that models implemented in both Translate and Fairseq can be trained. Translate also provides the ability to export some models to Caffe2 graphs via ONNX and to load and run these models from C++ for production purposes. Currently, we export components (encoder, decoder) to Caffe2 separately and beam search is implemented in C++. In the near future, we will be able to export the beam search as well. We also plan to add export support to more models.

Quickstart

If you are just interested in training/evaluating MT models, and not in exporting the models to Caffe2 via ONNX, you can install Translate for Python 3 by following these few steps:

  1. Install pytorch
  2. Install fairseq
  3. Clone this repository git clone https://github.com/pytorch/translate.git pytorch-translate && cd pytorch-translate
  4. Run python setup.py install

Provided you have CUDA installed you should be good to go.

Requirements and Full Installation

Translate Requires:

  • A Linux operating system with a CUDA compatible card
  • GNU C++ compiler version 4.9.2 and above
  • A CUDA installation. We recommend CUDA 8.0 or CUDA 9.0

Use Our Docker Image:

Install Docker and nvidia-docker, then run

sudo docker pull pytorch/translate
sudo nvidia-docker run -i -t --rm pytorch/translate /bin/bash
. ~/miniconda/bin/activate
cd ~/translate

You should now be able to run the sample commands in the Usage Examples section below. You can also see the available image versions under https://hub.docker.com/r/pytorch/translate/tags/.

Install Translate from Source:

These instructions were mainly tested on Ubuntu 16.04.5 LTS (Xenial Xerus) with a Tesla M60 card and a CUDA 9 installation. We highly encourage you to report an issue if you are unable to install this project for your specific configuration.

  • If you don't already have an existing Anaconda environment with Python 3.6, you can install one via Miniconda3:

    wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
    chmod +x miniconda.sh
    ./miniconda.sh -b -p ~/miniconda
    rm miniconda.sh
    . ~/miniconda/bin/activate
    
  • Clone the Translate repo:

    git clone https://github.com/pytorch/translate.git
    pushd translate
    
  • Install the PyTorch conda package:

    # Set to 8 or 9 depending on your CUDA version.
    TMP_CUDA_VERSION="9"
    
    # Uninstall previous versions of PyTorch. Doing this twice is intentional.
    # Error messages about torch not being installed are benign.
    pip uninstall -y torch
    pip uninstall -y torch
    
    # This may not be necessary if you already have the latest cuDNN library.
    conda install -y cudnn
    
    # Add LAPACK support for the GPU.
    conda install -y -c pytorch "magma-cuda${TMP_CUDA_VERSION}0"
    
    # Install the combined PyTorch nightly conda package.
    conda install pytorch-nightly cudatoolkit=${TMP_CUDA_VERSION}.0 -c pytorch
    
    # Install NCCL2.
    wget "https://s3.amazonaws.com/pytorch/nccl_2.1.15-1%2Bcuda${TMP_CUDA_VERSION}.0_x86_64.txz"
    TMP_NCCL_VERSION="nccl_2.1.15-1+cuda${TMP_CUDA_VERSION}.0_x86_64"
    tar -xvf "${TMP_NCCL_VERSION}.txz"
    rm "${TMP_NCCL_VERSION}.txz"
    
    # Set some environmental variables needed to link libraries correctly.
    export CONDA_PATH="$(dirname $(which conda))/.."
    export NCCL_ROOT_DIR="$(pwd)/${TMP_NCCL_VERSION}"
    export LD_LIBRARY_PATH="${CONDA_PATH}/lib:${NCCL_ROOT_DIR}/lib:${LD_LIBRARY_PATH}"
    
  • Install ONNX:

    git clone --recursive https://github.com/onnx/onnx.git
    yes | pip install ./onnx 2>&1 | tee ONNX_OUT
    

If you get a Protobuf compiler not found error, you need to install it:

conda install -c anaconda protobuf

Then, try to install ONNX again:

yes | pip install ./onnx 2>&1 | tee ONNX_OUT
  • Build Translate:

    pip uninstall -y pytorch-translate
    python3 setup.py build develop
    

Now you should be able to run the example scripts below!

Usage Examples

Note: the example commands given assume that you are the root of the cloned GitHub repository or that you're in the translate directory of the Docker or Amazon image. You may also need to make sure you have the Anaconda environment activated.

Training

We provide an example script to train a model for the IWSLT 2014 German-English task. We used this command to obtain a pretrained model:

bash pytorch_translate/examples/train_iwslt14.sh

The pretrained model actually contains two checkpoints that correspond to training twice with random initialization of the parameters. This is useful to obtain ensembles. This dataset is relatively small (~160K sentence pairs), so training will complete in a few hours on a single GPU.

Training with tensorboard visualization

We provide support for visualizing training stats with tensorboard. As a dependency, you will need tensorboard_logger installed.

pip install tensorboard_logger

Please also make sure that tensorboard is installed. It also comes with tensorflow installation.

You can use the above example script to train with tensorboard, but need to change line 10 from :

CUDA_VISIBLE_DEVICES=0 python3 pytorch_translate/train.py

to

CUDA_VISIBLE_DEVICES=0 python3 pytorch_translate/train_with_tensorboard.py

The event log directory for tensorboard can be specified by option --tensorboard_dir with a default value: run-1234. This directory is appended to your --save_dir argument.

For example in the above script, you can visualize with:

tensorboard --logdir checkpoints/runs/run-1234

Multiple runs can be compared by specifying different --tensorboard_dir. i.e. run-1234 and run-2345. Then

tensorboard --logdir checkpoints/runs

can visualize stats from both runs.

Pretrained Model

A pretrained model for IWSLT 2014 can be evaluated by running the example script:

bash pytorch_translate/examples/generate_iwslt14.sh

Note the improvement in performance when using an ensemble of size 2 instead of a single model.

Exporting a Model with ONNX

We provide an example script to export a PyTorch model to a Caffe2 graph via ONNX:

bash pytorch_translate/examples/export_iwslt14.sh

This will output two files, encoder.pb and decoder.pb, that correspond to the computation of the encoder and one step of the decoder. The example exports a single checkpoint (--checkpoint model/averaged_checkpoint_best_0.pt but is also possible to export an ensemble (--checkpoint model/averaged_checkpoint_best_0.pt --checkpoint model/averaged_checkpoint_best_1.pt). Note that during export, you can also control a few hyperparameters such as beam search size, word and UNK rewards.

Using the Model

To use the sample exported Caffe2 model to translate sentences, run:

echo "hallo welt" | bash pytorch_translate/examples/translate_iwslt14.sh

Note that the model takes in BPE inputs, so some input words need to be split into multiple tokens. For instance, "hineinstopfen" is represented as "hinein@@ stop@@ fen".

PyTorch Translate Research

We welcome you to explore the models we have in the pytorch_translate/research folder. If you use them and encounter any errors, please paste logs and a command that we can use to reproduce the error. Feel free to contribute any bugfixes or report your experience, but keep in mind that these models are a work in progress and thus are currently unsupported.

Join the Translate Community

We welcome contributions! See the CONTRIBUTING.md file for how to help out.

License

Translate is BSD-licensed, as found in the LICENSE file.

Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023