QMagFace: Simple and Accurate Quality-Aware Face Recognition

Related tags

Deep LearningQMagFace
Overview

Quality-Aware Face Recognition

26.11.2021 start readme

QMagFace: Simple and Accurate Quality-Aware Face Recognition

Table of Contents

Abstract

Face recognition systems have to deal with large variabilities (such as different poses, illuminations, and expressions) that might lead to incorrect matching decisions. These variabilities can be measured in terms of face image quality which is defined over the utility of a sample for recognition. Previous works on face recognition either do not employ this valuable information or make use of noninherently fit quality estimates. In this work, we propose a simple and effective face recognition solution (QMag- Face) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes modelspecific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced quality-awareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as crosspose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.97% on XQLFQ, and 98.74% on CFP-FP.

Results

The proposed approach is analysed in three steps. First, we report the performance of QMagFace on six face recognition benchmarks against ten recent state-of-the-art methods in image- and video-based recognition tasks to provide a comprehensive comparison with state-of-the-art. Second, we investigate the face recognition performance of QMagFace over a wide FMR range to show its suitability for a wide variety of applications and to demonstrate that the quality-aware comparison score constantly enhances the recognition performance. Third, we analyse the optimal quality weight over a wide threshold range to demonstrate the robustness of the training process and the generalizability of the proposed approach.

In the following, we will only show some results. For more details and dicussions, please take a look at the paper.

Performance on face recognition benchmarks - The face recognition performance on the four benchmarks is reported in terms of benchmark accuracy (%). The highest performance is marked bold. The proposed approach, QMagFace-100, achieves state-of-the-art face recognition performance, especially in cross-age (AgeDB), cross-pose (CFP-FP), and cross-quality (XQLFW) scenarios. Since the FIQ captures these challenging conditions and the quality values represent the utility of the images for our specific network, the proposed quality-aware comparison score can specifically address the circumstance and their effect on the network. Consequently, it performs highly accurate in the cross-age, cross-pose, and cross-quality scenarios and achieves state-of-the-art performances.

Face recognition performance over a wide range of FMRs - The face recognition performance is reported in terms of FNMR [%] over a wide range of FMRs. The MagFace and the proposed QMagFace approach are compared for three backbone architectures on three databases. The better values between both approaches are highlighted in bold. In general, the proposed quality-aware solutions constantly improve the performance, often by a large margin. This is especially true for QMagFace based on the iResNet-100 backbone.

Robustness analysis - The optimal quality weight for different decision thresholds is reported on four databases. Training on different databases lead to similar linear solutions for the quality-weighting function. The results demonstrate that (a) the choice of a linear function is justified and (b) that the learned models have a high generalizability since the quality-weighting function trained on one database is very similar to the optimal functions of the others.

Installation

To be done soon

Citing

If you use this code, please cite the following paper.

@article{QMagFace,
  author    = {Philipp Terh{\"{o}}rst and
               Malte Ihlefeld and
               Marco Huber and
               Naser Damer and
               Florian Kirchbuchner and
               Kiran Raja and
               Arjan Kuijper},
  title     = {{QMagFace}: Simple and Accurate Quality-Aware Face Recognition},
  journal   = {CoRR},
  volume    = {abs/2111.13475},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.13475},
  eprinttype = {arXiv},
  eprint    = {2111.13475},
}

If you make use of our implementation based on MagFace, please additionally cite the original MagFace module.

Acknowledgement

This research work has been funded by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. Portions of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office. This work was carried out during the tenure of an ERCIM ’Alain Bensoussan‘ Fellowship Programme.

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Philipp Terhörst
Philipp Terhörst
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022