EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

Related tags

Deep LearningMADE
Overview

MADE (Multi-Adapter Dataset Experts)

This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the paper Single-dataset Experts for Multi-dataset Question Answering.

MADE combines a shared Transformer with a collection of adapters that are specialized to different reading comprehension datasets. See our paper for details.

Quick links

Requirements

The code uses Python 3.8, PyTorch, and the adapter-transformers library. Install the requirements with:

pip install -r requirements.txt

Download the data

You can download the datasets used in the paper from the repository for the MRQA 2019 shared task.

The datasets should be stored in directories ending with train or dev. For example, download the in-domain training datasets to a directory called data/train/ and download the in-domain development datasets to data/dev/.

For zero-shot and few-shot experiments, download the MRQA out-of-domain development datasets to a separate directory and split them into training and development splits using scripts/split_datasets.py. For example, download the datasets to data/transfer/ and run

ls data/transfer/* -1 | xargs -l python scripts/split_datasets.py

Use the default random seed (13) to replicate the splits used in the paper.

Download the trained models

The trained models are stored on the HuggingFace model hub at this URL: https://huggingface.co/princeton-nlp/MADE. All of the models are based on the RoBERTa-base model. They are:

To download just the MADE Transformer and adapters:

mkdir made_transformer
wget https://huggingface.co/princeton-nlp/MADE/resolve/main/made_transformer/model.pt -O made_transformer/model.pt

mkdir made_tuned_adapters
for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  mkdir "made_tuned_adapters/${d}"
  wget "https://huggingface.co/princeton-nlp/MADE/resolve/main/made_tuned_adapters/${d}/model.pt" -O "made_tuned_adapters/${d}/model.pt"
done;

You can download all of the models at once by cloning the repository (first installing Git LFS):

git lfs install
git clone https://huggingface.co/princeton-nlp/MADE
mv MADE models

Run the model

The scripts in scripts/train/ and scripts/transfer/ provide examples of how to run the code. For more details, see the descriptions of the command line flags in run.py.

Train

You can use the scripts in scripts/train/ to train models on the MRQA datasets. For example, to train MADE:

./scripts/train/made_training.sh

And to tune the MADE adapters separately on individual datasets:

for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  ./scripts/train/made_adapter_tuning.sh $d
done;

See run.py for details about the command line arguments.

Evaluate

A single fine-tuned model:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from multi_dataset_ft \
    --output_dir output/zero_shot/multi_dataset_ft

An individual MADE adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/made_tuned_adapters/SQuAD

An individual single-dataset adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_adapters_from single_dataset_adapters/ \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/single_dataset_adapters/SQuAD

An ensemble of MADE adapters. This will run a forward pass through every adapter in parallel.

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --made \
    --parallel_adapters  \
    --output_dir output/zero_shot/made_ensemble

Averaging the parameters of the MADE adapters:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --adapter \
    --average_adapters  \
    --output_dir output/zero_shot/made_avg

Running UnifiedQA:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --seq2seq \
    --model_name_or_path allenai/unifiedqa-t5-base \
    --output_dir output/zero_shot/unifiedqa

Transfer

The scripts in scripts/transfer/ provide examples of how to run the few-shot transfer learning experiments described in the paper. For example, the following command will repeat for three random seeds: (1) sample 64 training examples from BioASQ, (2) calculate the zero-shot loss of all the MADE adapters on the training examples, (3) average the adapter parameters in proportion to zero-shot loss, (4) hold out 32 training examples for validation data, (5) train the adapter until performance stops improving on the 32 validation examples, and (6) evaluate the adapter on the full development set.

python run.py \
    --train_on BioASQ \
    --adapter_names SQuAD HotpotQA TriviaQA NewsQA SearchQA NaturalQuestions \
    --made \
    --parallel_made \
    --weighted_average_before_training \
    --adapter_learning_rate 1e-5 \
    --steps 200 \
    --patience 10 \
    --eval_before_training \
    --full_eval_after_training \
    --max_train_examples 64 \
    --few_shot \
    --criterion "loss" \
    --negative_examples \
    --save \
    --seeds 7 19 29 \
    --load_from "made_transformer" \
    --load_adapters_from "made_tuned_adapters" \
    --name "transfer/made_preaverage/BioASQ/64"

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{friedman2021single,
   title={Single-dataset Experts for Multi-dataset QA},
   author={Friedman, Dan and Dodge, Ben and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022