Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Overview

Range Image-based 3D LiDAR Localization

This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicles.

Developed by Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe and Jens Behley.

It uses a novel sensor model with MCL to achieve 3D LiDAR global localization and pose tracking. The sensor model compares the range image of the current LiDAR scan to the synthetic range images rendered from the triangular mesh to update the weight of particles. This method is simple but can be used with different types of LiDAR scanners in different datasets and environments without fine-tuning.

Online localization demo.

Visualizations: Left: the triangular mesh and the localization results; Right: Sub-tile maps

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. How to use
  5. Related work
  6. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2021icra,
	author = {X. Chen and I. Vizzo and T. L{\"a}be and J. Behley and C. Stachniss},
	title = {{Range Image-based LiDAR Localization for Autonomous Vehicles}},
	booktitle = icra,
	year = 2021,
	url = {http://www.ipb.uni-bonn.de/pdfs/chen2021icra.pdf},
	codeurl = {https://github.com/PRBonn/range-mcl}
}

Dependencies

The code was tested with Ubuntu 20.04 with its standard python version 3.8.

We are using OpenGL to do achieve fast rendering, so you will need an OpenGL capable graphics card (we use Nvidia cards, e.g. 2080Ti) to be fast.

  • System dependencies related to OpenGL:

    sudo apt-get update 
    sudo apt-get install libgl1-mesa-glx
  • Other system dependencies:

    sudo apt-get update 
    sudo apt-get install libusb-1.0   # open3d 0.12.0 dependency
    sudo apt-get install -y python3-pip
    sudo -H pip3 install --upgrade pip
  • Python dependencies (may also work with different versions than mentioned in the requirements file)

    sudo -H pip3 install -r requirements.txt

How to use

Quick use

For a quick demo, one could download the mesh map and LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

cd src/
python3 main_range_mcl.py

One could then get the online visualization of range-based MCL as shown in the gif.

More detailed usage

Here, we provide more detailed information about our range-image-based LiDAR localization method, including building mesh maps, evaluating the localization results and more pre-built maps of different datasets.

Build mesh map

To build a mesh map, we use the Poisson surface reconstruction provided by the Open3D library. One need to download the LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

python3 build_mesh_map.py

Notice that, we used our moving object segmentation method (coming soon) cleaned the scans before building the map. One could also use other methods to clean the map.

For fast calculating and generating range and normal data for LiDAR scans, one could find more details here.

Evaluation

Once finished the localization process, one would get the localization results at /results. To evaluate the localization results, one could check the evaluation.py. For a quick demo, one just need to run

python3 evaluation.py

Collection of mesh maps

Notice that, the mesh maps were generated using the data from KITTI dataset, MulRan dataset and Apollo dataset. Please register on their official website to apply for the original data.

Related work

Puma: Poisson Surface Reconstruction for LiDAR Odometry and Mapping

We also released the implementation of the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping. This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh online.

Overlap-localization: Overlap-based 3D LiDAR Monte Carlo Localization

We previously also proposed a learning-based global localization method, called overlap localization. It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2021, Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Comments
  • some problem

    some problem

    image

    [email protected]:~/range-mcl/src$ python3 main_range_mcl.py INFO - 2021-06-24 00:21:08,437 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-06-24 00:21:08,451 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-06-24 00:21:21,473 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储)

    opened by conancheng 2
  • Regd. CARLA data

    Regd. CARLA data

    Hi,

    Thank you for your work and the open source release. I was wondering if you have released the CARLA sequence (mesh map, odometry etc.) from your experiments somewhere?

    opened by karnikram 0
  • Error with the DISPLAY environment variable

    Error with the DISPLAY environment variable

    Hi there, thanks for providing the code to test. However, I got an issue running the code.

    ==================================================================

    Message=index 0 is out of bounds for axis 0 with size 0 Source=F:\Capstone\algorithms\range_mcl\src\utils.py StackTrace: File "F:\Capstone\algorithms\range_mcl\src\utils.py", line 340, in load_poses_kitti inv_frame0 = np.linalg.inv(poses[0]) File "F:\Capstone\algorithms\range_mcl\src\main_range_mcl.py", line 49, in (Current frame) map_poses = load_poses_kitti(map_pose_file, map_calib_file)

    ======================================================================

    I tried to search for the GLFWError 65544 but none of the solutions seems to work. Is there anything idea what is happening?

    Regards Jimmy

    opened by GinWeng 1
  • 20.04 python3.8 can't be running...

    20.04 python3.8 can't be running...

    [email protected]:~/range-mcl-main/src$ python3 main_range_mcl.py INFO - 2021-08-06 11:42:08,929 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-08-06 11:42:08,931 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-08-06 11:42:12,640 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储) 2021-08-06 14-09-58屏幕截图

    2021-08-06 14-09-33屏幕截图

    opened by conancheng 4
  • How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    The work is excellent and I'm honor to study for it.But I have two questions about it: 1、how the algorithm runs in real time not need "velodyne_bin" 2、its compatibility with solid-state lidar ,such as livox I'm looking forward to your answers,thank you Yours sincerely

    opened by PigletPh 8
  • python main_range_mcl.py problem

    python main_range_mcl.py problem

    OS: ubuntu2004 python: Python 3.8.5 gpu: GeForce GTX 1060 drive NVIDIA-SMI 460.56 Driver Version: 460.56 CUDA Version: 11.2

    $ python main_range_mcl.py ... finished frame 1099 with time of: 7.22408e-05 s finished frame 1100 with time of: 5.55515e-05 s Average runtime after convergence: 0.16806003594713895 save the localization results at: ../results/demo_loc_results.npz Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTextureBuffer.del at 0x7efcd4e45ca0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 128, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlFramebuffer.del at 0x7efcd4e4e9d0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 624, in del AttributeError: 'NoneType' object has no attribute 'glDeleteFramebuffers' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlRenderbuffer.del at 0x7efcd4e4e5e0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 591, in del AttributeError: 'NoneType' object has no attribute 'glDeleteRenderbuffers'

    opened by improve100 3
Releases(v1.0)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022