Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Overview

Average-Death-Rate

Displaying plot of death rates from past years in Poland


The goal

  1. collect the data from a CSV file
  2. count the ADR (Average Death Rate) from years 2015-2019 and 2020+
  3. change this data to float and add it into a list
  4. create a python data plot on which OX are the years and OY ADR data

Data source

Data source: death statistics from 1 september 2015


Demo Tests

Just to show how does matplotlib work:

In the real project, I will have two plots on one displayed interface. Those are divided into subplots, which in this case, there will be two of them.


The idea of the first plot. This data is from the actual source (not the one from my code).



Project source

Charts show data where data arrays are the same. First data array that goes on to OX should have the same length as data array on OY, so basically x = y without mentioning data types (except for str and bool). The few things to mention within the code in src directory are here just in case that you want it to work:



Debuggers

While checking if everything goes alright, I have used DBG's in my code and most of them are turned off. To turn them on, you can simply just change the DBG state:

    _DBG8_ = True                   # Other
    _DBG9_ = True                   # Standard debug

I have used _DBG9_ to check if class inside of count.py was giving the right answers. Around the class and programs inside of src directory, after each operation there is a debugger with an if. With a print() function, I could see if the operation was made correctly and at the same time, I was going on to the next line to see clearly if the next operation made was successful:

    if (_DBG9_): print('ls =', ls, '\n\n')



Screenshots and generating plots

All of these screenshots are made from a data science library to visualize data, matplotlib. On matplotlib, I set label of OX axis to 'Years' and OY axis to 'ADR'. Of course, the data for 'Years' and 'ADR' was generated within Operations() class inside of count.py file. Next, I needed to visualize the data on chart, so I used matplotlib plot function to show data on both, OX and OY axis and decorated them a bit by adding marker argument to plot function. I have also added a label to the graph:

    plt.title("ADR data chart from 2015")
    plt.xlabel('Years')         # OX label: years from 2015
    plt.ylabel('ADR')           # OY label: ADR (short: average death rate)


    # 2. adding plot:
    plt.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data,

To show the label of main graph, you need to add the following function:

    plt.legend()

The final result:


The data should be displayed on two plots (or subplots). To do that, subplots() method was used for this. There are two subplots, and one column. To divide this into two rows and one column, the subplots() takes two arguments which describes the number of rows and columns:

    fig, ax = plt.subplots(nrows=row_num, ncols=col_num)

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)      # In this project, this was made using these args

axis0 and axis1 are describing axis that the plot is on. Then for plot method, we don't use plt.plot(), label or titles because we assign different plots to different axis (in this case):

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)

    axis0.set_title("ADR data charts 2015 - 2021")
    axis0.set_xlabel('Years')         # OX label: years from 2015
    axis0.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis0.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data
    axis0.legend()
    axis0.grid(True)
    
    
    
    axis1.set_xlabel('Years (2020 - 2021+)')         # OX label: years from 2020
    axis1.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis1.plot(ls_second_years, ls_main_data[5:], label='ADR', marker='o', color='orange')
    axis1.legend()
    axis1.grid(True)
    
    plt.show()

At the end, we give plt.show() method because we want to display the whole data chart. The final result is here:

Updates:

03.09: adding standard deviation plot

Owner
Oliwier Szymański
self-taught coder. Most of my projects are written in Python or Java. I'm trying to learn from mistakes that I made in my codes and not only
Oliwier Szymański
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口

股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口,包含日线,历史K线,分时线,分钟线,全部实时采集,系统包括新浪腾讯双数据核心采集获取,自动故障切换,STOCK数据格式成DataFrame格式,可用来查询研究量化分析,股票程序自动化交易系统.为量化研究者在数据获取方面极大地减轻工作量,更加专注于策略和模型的研究与实现。

dev 572 Jan 08, 2023
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
trade bot connected to binance API/ websocket.,, include dashboard in plotly dash to visualize trades and balances

Crypto trade bot 1. What it is Trading bot connected to Binance API. This project made for fun. So ... Do not use to trade live before you have backte

G 3 Oct 07, 2022
A simple project on Data Visualization for CSCI-40 course.

Simple-Data-Visualization A simple project on Data Visualization for CSCI-40 course - the instructions can be found here SAT results in New York in 20

Hugo Matousek 8 Oct 27, 2021
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 30, 2022