Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

Overview

GraspNet Baseline

Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020).

[paper] [dataset] [API] [doc]


Top 50 grasps detected by our baseline model.

teaser

Requirements

  • Python 3
  • PyTorch 1.6
  • Open3d >=0.8
  • TensorBoard 2.3
  • NumPy
  • SciPy
  • Pillow
  • tqdm

Installation

Get the code.

git clone https://github.com/graspnet/graspnet-baseline.git
cd graspnet-baseline

Install packages via Pip.

pip install -r requirements.txt

Compile and install pointnet2 operators (code adapted from votenet).

cd pointnet2
python setup.py install

Compile and install knn operator (code adapted from pytorch_knn_cuda).

cd knn
python setup.py install

Install graspnetAPI for evaluation.

git clone https://github.com/graspnet/graspnetAPI.git
cd graspnetAPI
pip install .

Tolerance Label Generation

Tolerance labels are not included in the original dataset, and need additional generation. Make sure you have downloaded the orginal dataset from GraspNet. The generation code is in dataset/generate_tolerance_label.py. You can simply generate tolerance label by running the script: (--dataset_root and --num_workers should be specified according to your settings)

cd dataset
sh command_generate_tolerance_label.sh

Or you can download the tolerance labels from Google Drive/Baidu Pan and run:

mv tolerance.tar dataset/
cd dataset
tar -xvf tolerance.tar

Training and Testing

Training examples are shown in command_train.sh. --dataset_root, --camera and --log_dir should be specified according to your settings. You can use TensorBoard to visualize training process.

Testing examples are shown in command_test.sh, which contains inference and result evaluation. --dataset_root, --camera, --checkpoint_path and --dump_dir should be specified according to your settings. Set --collision_thresh to -1 for fast inference.

The pretrained weights can be downloaded from:

checkpoint-rs.tar and checkpoint-kn.tar are trained using RealSense data and Kinect data respectively.

Demo

A demo program is provided for grasp detection and visualization using RGB-D images. You can refer to command_demo.sh to run the program. --checkpoint_path should be specified according to your settings (make sure you have downloaded the pretrained weights). The output should be similar to the following example:

Try your own data by modifying get_and_process_data() in demo.py. Refer to doc/example_data/ for data preparation. RGB-D images and camera intrinsics are required for inference. factor_depth stands for the scale for depth value to be transformed into meters. You can also add a workspace mask for denser output.

Results

Results "In repo" report the model performance with single-view collision detection as post-processing. In evaluation we set --collision_thresh to 0.01.

Evaluation results on RealSense camera:

Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4
In paper 27.56 33.43 16.95 26.11 34.18 14.23 10.55 11.25 3.98
In repo 47.47 55.90 41.33 42.27 51.01 35.40 16.61 20.84 8.30

Evaluation results on Kinect camera:

Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4
In paper 29.88 36.19 19.31 27.84 33.19 16.62 11.51 12.92 3.56
In repo 42.02 49.91 35.34 37.35 44.82 30.40 12.17 15.17 5.51

Citation

Please cite our paper in your publications if it helps your research:

@inproceedings{fang2020graspnet,
  title={GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping},
  author={Fang, Hao-Shu and Wang, Chenxi and Gou, Minghao and Lu, Cewu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)},
  pages={11444--11453},
  year={2020}
}

License

All data, labels, code and models belong to the graspnet team, MVIG, SJTU and are freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an email at fhaoshu at gmail_dot_com and cc lucewu at sjtu.edu.cn .

Owner
GraspNet
GraspNet-1Billion official orgnization. Make general grasping great!
GraspNet
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022