Create charts with Python in a very similar way to creating charts using Chart.js

Overview


The power of Chart.js in Jupyter Notebooks

GitHub GitHub release (latest by date) Binder Awesome Chart.js

Installation

You can install ipychart from your terminal using pip or conda:

# using pip
$ pip install ipychart

# using conda
$ conda install -c conda-forge ipychart

Documentation

Usage

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:

You can also create charts directly from a pandas dataframe. See the Pandas Interface section of the documentation for more details.

Development Installation

For a development installation:

$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab nodejs -c conda-forge
$ cd ipychart/js
$ npm install yarn
$ npm install 
$ cd .. 
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychart

References

License

Ipychart is available under the MIT license.

You might also like...
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

mysql relation charts
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Comments
  • Running the formatter with a function?

    Running the formatter with a function?

    Hey guys,

    Firstly, thank you for this! What a great implementation. I really appreciate your efforts.

    So I inherited a code base that I'm trying to streamline data while using JavaScript and Python. I'm running into an issue where I can't seem to get the formatter to work on data labels. I'll post the working JS version below and what I've tried to do in Jupyter/Python.

    setChartPercentages() { for (const set of this.chart.data.datasets) set.datalabels = { labels: { value: { formatter: function(value, ctx) { //ctx not needed, but including it as that's typically what the chart.js docs do. return value + '%' } } } } } This function is called when creating or updating charts. I simplified it a bit, but basically it shows total percent instead of the numbers.

    I tried to replicate this in ipychart. I've tried to use the callback function as stated in the documentation as well as just using the formatter. I even tried to combine them. All of them did not register the formatter.

    dataset = { 'labels': ['Data 1', 'Data 2', 'Data 3', 'Data 4', 'Data 5', 'Data 6', 'Data 7', 'Data 8'], 'datasets': [{'data': [14, 22, 36, 48, 60, 90, 28, 12], "datalabels": {"display": True, "labels": { "value": { 'formatter': { 'callback': '''function(value, ctx) {return '$' + value.toString()}''' } } } } }] }

    I also tried

    '''function(value, index, values) {return '$' + value}'''

    Any idea on how to get the formatter to register? Thank you a ton for any help.

    opened by timmyjl12 3
  • Animation with ipywidget

    Animation with ipywidget

    Thanks for this amazing library, I'm surprised it's not already super hyped as the plots are looking great, and at the moment there are zero good equivalents for Jupyter notebooks.

    It is stated in the doc that a plot could be animated with ipywidget. I tried, but there seems to be no equivalent to the Figure attribute of bqplot, or FigureWidget of plotly, which would be used in e.g. a widgets.VBox object. Here is what I currently have, which doesn't work:

    # Modules import
    from ipychart import Chart
    import ipywidgets as widgets
    import time
    import numpy as np
    
    # Define data and chart
    data = {'datasets': [{'data': [{'x': 0, 'y': 0}, {'x': 1, 'y': 1}]}]}
    mychart = Chart(data, 'line')
    
    # Define a button for animation
    btn = widgets.Button(description="Start", icon="play")
    
    # Callback to update the chart
    def update_chart(btn):
        for i in range(10):
            y = np.random.rand(2)
            with mychart.hold_sync():
                mychart.data = {'datasets': [{'data': [{'x': 0, 'y': y[0]}, {'x': 1, 'y': y[1]}]}]}
            time.sleep(0.1)
            
    btn.on_click(update_chart)
    
    # UI Combining Button & Chart
    widgets.VBox([btn, mychart])
    
    

    I believe I should provide something like mychart.fig instead of mychart to widgets.VBox, but I couldn't find any similar attribute in the Chart class. Any idea how to solve that? If yes, that would be a great addendum to the documentation. Thank you :)

    opened by ColasDroin 3
  • Running on jupyter-lab

    Running on jupyter-lab

    Hi,

    Nice project you've got here, just what I wanted.

    Could you add a warning in the "Installing" docs saying that this only works with jupyter-notebook and not with jupyter-labs?

    I don't know if it was a problem only for me, but I couldn't make it work on Jupyter-lab, I kept getting errors when the front-end tried to depend on jupyter.extensions.jupyterWidgetRegistry. Unfortunately I'm not that used with this whole notebook thing and lost a couple hours trying to make it work. 😅

    BR, Gabriel

    opened by Psidium 2
  • Chartjs graphs are not respecting the width and height of the container.

    Chartjs graphs are not respecting the width and height of the container.

    It seems ChartJS might be trying to maintain the aspect ratio in the Voila dashboard web app. I need to turn that option off by setting the "maintainAspectRatio: false" option. Could you add this to the IPYCharts package to correctly render the charts in Voila?

    opened by ndgayan 2
Releases(v0.4.0)
  • v0.4.0(Mar 17, 2022)

    New features in this version:

    • Chart.js backend was updated to 3.x.x. This is a major update, all changes can be seen here: https://www.chartjs.org/docs/latest/getting-started/v3-migration.html. This implies large performance improvements, easier customization, a rewritten animation system, bug fixes etc.
    • Doc: Move from GitLab pages to GitHub pages. Replace algolia search by flexsearch. Re-writing of some sections to match the new syntax of Chart.js 3.x.x. Better handling of components, which are now isolated in separates HTML files called by Vue scripts.
    • Convert all JS code to ES6 Javascript standard. Use ESLint and Prettier to clean the JS codebase.
    • Integration and adaptation of the colorscheme plugin into the codebase because original implementation is not compatible with Chart.js 3.x.x.
    • Start TDD on Python side.
    Source code(tar.gz)
    Source code(zip)
  • v0.3.3(Jan 21, 2022)

  • v0.3.2(Dec 18, 2021)

    New features in this version:

    • Pandas Interface : Complete refactoring of the API. Charts are now created using functions.
    • Added support of Jupyter Lab.
    • Added dynamic update of charts when an agument of the chart is modified. This bring a lots of possibilities to dynamically modify a chart, for example by using ipywidgets (sliders, buttons ...).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Nov 7, 2020)

    New features in this version:

    • Full cleaning of Python code
    • Reduce fontsize in tooltips (back to default size) for charts made using the Pandas Interface
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Sep 15, 2020)

    New features in this version:

    • Add zoom feature (using https://github.com/chartjs/chartjs-plugin-zoom), allowing the user to zoom in the chart using his mouse. Double click on the chart will reset the zoom.

    Bug Fixes:

    • Fix tooltips for doughnut, pie, polarArea charts when using pandas interface (tooltips wasn't formatted in the same way as other charts).
    • Fix typing in methods of ChartDataFrame class in pandas interface.
    • Fix docstrings: removing excess arguments and adding missing arguments.
    • Various fixes and minor modifications in the documentation
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Sep 4, 2020)

    New features in this version:

    • Pandas Interface : Tooltips are automatically generated to use the column names of the dataframe used to draw the chart. Therefore, the information displayed when hovering the Chart is more relevant and more complete!
    • Code optimization in both Chart & ChartDataFrame classes

    Bug Fixes:

    • Add missing requirements
    • Requirements & LICENSE are now packaged in the source distribution
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Aug 2, 2020)

    New features in this version:

    • Pandas Interface : add aggregator in the y scale label for clarity purpose.

    Bug Fixes:

    • ChartDataFrame can now handle dataset_options as list (for 2 datasets when hue is activated) or as dict (for 1 dataset when hue is deactivated)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Jul 24, 2020)

    New features in this version:

    • Pandas Interface : draw charts from your pandas dataframe. More details in documentation.
    • Better handling of callback functions in Javascript side. Using loops & Lodash Javascript package instead of listing all possible callbacks.

    Bug Fixes:

    • Dalalabels automatic coloring didn't work when a colorscheme was selected.
    • Default point colors and border colors didn't work on mixed type charts.
    • Callback functions didn't work on axes options.
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 18, 2020)

    Second version of ipychart. Some new features are available:

    • Datalabels (using https://github.com/chartjs/chartjs-plugin-datalabels)
    • Colorschemes (using https://github.com/nagix/chartjs-plugin-colorschemes)
    • New default style
    • Export chart to html

    ... And several bug fixes.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Apr 29, 2020)

Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
With Holoviews, your data visualizes itself.

HoloViews Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data a

HoloViz 2.3k Jan 02, 2023
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022
Gaphas is the diagramming widget library for Python.

Gaphas Gaphas is the diagramming widget library for Python. Gaphas is a library that provides the user interface component (widget) for drawing diagra

Gaphor 144 Dec 14, 2022
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
Fast visualization of radar_scenes based on oleschum/radar_scenes

RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole

Henrik Söderlund 2 Dec 09, 2021
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
CPG represent!

CoolPandasGroup CPG represent! Arianna Brandon Enne Luan Tracie Project requirements: use Pandas to clean and format datasets use Jupyter Notebook to

Enne 3 Feb 07, 2022
Area-weighted venn-diagrams for Python/matplotlib

Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples

Konstantin Tretyakov 400 Dec 31, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo.

stock-graph-python Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo. Tiingo API Key You will need to add your

Toby 3 May 14, 2022
股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口

股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口,包含日线,历史K线,分时线,分钟线,全部实时采集,系统包括新浪腾讯双数据核心采集获取,自动故障切换,STOCK数据格式成DataFrame格式,可用来查询研究量化分析,股票程序自动化交易系统.为量化研究者在数据获取方面极大地减轻工作量,更加专注于策略和模型的研究与实现。

dev 572 Jan 08, 2023
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
This tool is designed to help administrators get an overview of their Active Directory structure.

This tool is designed to help administrators get an overview of their Active Directory structure. In the group view you can see all elements of an AD (OU, USER, GROUPS, COMPUTERS etc.). In the user v

deexno 2 Oct 30, 2022
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Splore - a simple graphical interface for scrolling through and exploring data sets of molecules

Scroll through and exPLORE molecule sets The splore framework aims to offer a si

3 Jun 18, 2022