🧇 Make Waffle Charts in Python.

Overview

PyWaffle

PyPI version ReadTheDocs Binder

PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts.

It provides a Figure constructor class Waffle, which could be passed to matplotlib.pyplot.figure and generates a matplotlib Figure object.

PyPI Page: https://pypi.org/project/pywaffle/

Documentation: http://pywaffle.readthedocs.io/

Installation

pip install pywaffle

Requirements

  • Python 3.5+
  • Matplotlib

Examples

1. Value Scaling

import matplotlib.pyplot as plt
from pywaffle import Waffle
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    columns=10, 
    values=[48, 46, 6],
    figsize=(5, 3)
)
plt.show()

basic

The values are automatically scaled to 24, 23 and 3 to fit 5 * 10 chart size.

2. Values in dict & Auto-sizing

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    legend={'loc': 'upper left', 'bbox_to_anchor': (1.1, 1)}
)
plt.show()

Use values in dictionary; use absolute value as block number, without defining columns

In this example, since only rows is specified and columns is empty, absolute values in values are used as block numbers. Similarly, rows could also be optional if columns is specified.

If values is a dict, its keys are used as labels.

3. Title, Legend, Colors, Background Color, Block Color, Direction and Style

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    title={'label': 'Vote Percentage in 2016 US Presidential Election', 'loc': 'left'},
    labels=[f"{k} ({v}%)" for k, v in data.items()],
    legend={'loc': 'lower left', 'bbox_to_anchor': (0, -0.4), 'ncol': len(data), 'framealpha': 0},
    starting_location='NW',
    block_arranging_style='snake'
)
fig.set_facecolor('#EEEEEE')
plt.show()

Add title, legend and background color; customize the block color

Many parameters, like title and legend, accept the same parameters as in Matplotlib.

4. Plot with Icons - Pictogram Chart

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1)},
    icons='child', 
    font_size=12, 
    icon_legend=True
)
plt.show()

Use Font Awesome icons

PyWaffle supports Font Awesome icons in the chart.

5. Multiple Plots in One Chart

import pandas as pd
data = pd.DataFrame(
    {
        'labels': ['Hillary Clinton', 'Donald Trump', 'Others'],
        'Virginia': [1981473, 1769443, 233715],
        'Maryland': [1677928, 943169, 160349],
        'West Virginia': [188794, 489371, 36258],
    },
).set_index('labels')

# A glance of the data:
#                  Maryland  Virginia  West Virginia
# labels                                            
# Hillary Clinton   1677928   1981473         188794
# Donald Trump       943169   1769443         489371
# Others             160349    233715          36258


fig = plt.figure(
    FigureClass=Waffle,
    plots={
        '311': {
            'values': data['Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 8},
            'title': {'label': '2016 Virginia Presidential Election Results', 'loc': 'left'}
        },
        '312': {
            'values': data['Maryland'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Maryland'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.2, 1), 'fontsize': 8},
            'title': {'label': '2016 Maryland Presidential Election Results', 'loc': 'left'}
        },
        '313': {
            'values': data['West Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['West Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.3, 1), 'fontsize': 8},
            'title': {'label': '2016 West Virginia Presidential Election Results', 'loc': 'left'}
        },
    },
    rows=5,  # outside parameter applied to all subplots
    colors=["#2196f3", "#ff5252", "#999999"],  # outside parameter applied to all subplots
    figsize=(9, 5)
)
plt.show()

Multiple plots

In this chart, 1 block = 30000 votes.

Data source https://en.wikipedia.org/wiki/United_States_presidential_election,_2016.

Demo

Wanna try it yourself? There is Online Demo!

What's New

See CHANGELOG

License

  • PyWaffle is under MIT license, see LICENSE file for the details.
  • The Font Awesome font is licensed under the SIL OFL 1.1: http://scripts.sil.org/OFL
Owner
Guangyang Li
Guangyang Li
Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.

Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.

Visual Python 564 Jan 03, 2023
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Plotly Dash Command Line Tools - Easily create and deploy Plotly Dash projects from templates

🛠️ dash-tools - Create and Deploy Plotly Dash Apps from Command Line | | | | | Create a templated multi-page Plotly Dash app with CLI in less than 7

Andrew Hossack 50 Dec 30, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Marc 611 Dec 29, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations

DomainCAT (Domain Connectivity Analysis Tool) Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of dom

DomainTools 34 Dec 09, 2022
Some examples with MatPlotLib library in Python

MatPlotLib Example Some examples with MatPlotLib library in Python Point: Run files only in project's directory About me Full name: Matin Ardestani Ag

Matin Ardestani 4 Mar 29, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Colormaps for astronomers

cmastro: colormaps for astronomers 🔭 This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
daily report of @arkinvest ETF activity + data collection

ark_invest daily weekday report of @arkinvest ETF activity + data collection This script was created to: Extract and save daily csv's from ARKInvest's

T D 27 Jan 02, 2023