🧇 Make Waffle Charts in Python.

Overview

PyWaffle

PyPI version ReadTheDocs Binder

PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts.

It provides a Figure constructor class Waffle, which could be passed to matplotlib.pyplot.figure and generates a matplotlib Figure object.

PyPI Page: https://pypi.org/project/pywaffle/

Documentation: http://pywaffle.readthedocs.io/

Installation

pip install pywaffle

Requirements

  • Python 3.5+
  • Matplotlib

Examples

1. Value Scaling

import matplotlib.pyplot as plt
from pywaffle import Waffle
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    columns=10, 
    values=[48, 46, 6],
    figsize=(5, 3)
)
plt.show()

basic

The values are automatically scaled to 24, 23 and 3 to fit 5 * 10 chart size.

2. Values in dict & Auto-sizing

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    legend={'loc': 'upper left', 'bbox_to_anchor': (1.1, 1)}
)
plt.show()

Use values in dictionary; use absolute value as block number, without defining columns

In this example, since only rows is specified and columns is empty, absolute values in values are used as block numbers. Similarly, rows could also be optional if columns is specified.

If values is a dict, its keys are used as labels.

3. Title, Legend, Colors, Background Color, Block Color, Direction and Style

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    title={'label': 'Vote Percentage in 2016 US Presidential Election', 'loc': 'left'},
    labels=[f"{k} ({v}%)" for k, v in data.items()],
    legend={'loc': 'lower left', 'bbox_to_anchor': (0, -0.4), 'ncol': len(data), 'framealpha': 0},
    starting_location='NW',
    block_arranging_style='snake'
)
fig.set_facecolor('#EEEEEE')
plt.show()

Add title, legend and background color; customize the block color

Many parameters, like title and legend, accept the same parameters as in Matplotlib.

4. Plot with Icons - Pictogram Chart

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1)},
    icons='child', 
    font_size=12, 
    icon_legend=True
)
plt.show()

Use Font Awesome icons

PyWaffle supports Font Awesome icons in the chart.

5. Multiple Plots in One Chart

import pandas as pd
data = pd.DataFrame(
    {
        'labels': ['Hillary Clinton', 'Donald Trump', 'Others'],
        'Virginia': [1981473, 1769443, 233715],
        'Maryland': [1677928, 943169, 160349],
        'West Virginia': [188794, 489371, 36258],
    },
).set_index('labels')

# A glance of the data:
#                  Maryland  Virginia  West Virginia
# labels                                            
# Hillary Clinton   1677928   1981473         188794
# Donald Trump       943169   1769443         489371
# Others             160349    233715          36258


fig = plt.figure(
    FigureClass=Waffle,
    plots={
        '311': {
            'values': data['Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 8},
            'title': {'label': '2016 Virginia Presidential Election Results', 'loc': 'left'}
        },
        '312': {
            'values': data['Maryland'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Maryland'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.2, 1), 'fontsize': 8},
            'title': {'label': '2016 Maryland Presidential Election Results', 'loc': 'left'}
        },
        '313': {
            'values': data['West Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['West Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.3, 1), 'fontsize': 8},
            'title': {'label': '2016 West Virginia Presidential Election Results', 'loc': 'left'}
        },
    },
    rows=5,  # outside parameter applied to all subplots
    colors=["#2196f3", "#ff5252", "#999999"],  # outside parameter applied to all subplots
    figsize=(9, 5)
)
plt.show()

Multiple plots

In this chart, 1 block = 30000 votes.

Data source https://en.wikipedia.org/wiki/United_States_presidential_election,_2016.

Demo

Wanna try it yourself? There is Online Demo!

What's New

See CHANGELOG

License

  • PyWaffle is under MIT license, see LICENSE file for the details.
  • The Font Awesome font is licensed under the SIL OFL 1.1: http://scripts.sil.org/OFL
Owner
Guangyang Li
Guangyang Li
Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo.

stock-graph-python Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo. Tiingo API Key You will need to add your

Toby 3 May 14, 2022
Function Plotter: a simple application with GUI to plot mathematical functions

Function-Plotter Function Plotter is a simple application with GUI to plot mathe

Mohamed Nabawe 4 Jan 03, 2022
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
Farhad Davaripour, Ph.D. 1 Jan 05, 2022
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
This plugin plots the time you spent on a tag as a histogram.

This plugin plots the time you spent on a tag as a histogram.

Tom Dörr 7 Sep 09, 2022
Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript Required.

Dash Dash is the most downloaded, trusted Python framework for building ML & data science web apps. Built on top of Plotly.js, React and Flask, Dash t

Plotly 17.9k Dec 31, 2022
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database

SpiderFoot Neo4j Tools Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database Step 1: Installation NOTE: This installs the sf

Black Lantern Security 42 Dec 26, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Péter Ferenc Gyarmati 1 Jan 17, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
A little word cloud generator in Python

Linux macOS Windows PyPI word_cloud A little word cloud generator in Python. Read more about it on the blog post or the website. The code is tested ag

Andreas Mueller 9.2k Dec 30, 2022
Mattia Ficarelli 2 Mar 29, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022