An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Overview

Germline Mutation Calling

This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants.

The pipeline requires as inputs aligned BAM files (e.g. with BWA) where the duplicates are already marked (e.g. with Picard or sambamba). It then performed Base Quality Score Recalibration and joint genotyping of multiple samples, which is automatically parallized over user defined intervals (for examples see intervals.txt) and chromosomes.

Filtering is performed using GATKs state-of-the-art Variant Quality Score Recalibration

At the end of the worklow, the Variant Effect Predictor is used to annotate the identified germline mutations.

A high level overview of the performed steps can be seen below:

DAG

As seen by the execution graph, an arbitrary number of samples/BAM files can be processed in parallel up to the joint variant calling.

Installation

Required tools:

The majority of the listed tools can be quite easily installed with conda which is recommanded.

Usage

First, modify the config_wgs.yaml and resources.yaml files. Both files contain detailed description what is expected. The config_wgs.yaml also contains links to some reference resources. Be careful, they are all specific for the GRCh37/hg19/b37 genome assembly.

After setting up all the config files and installing all tools, you can simply run:

snakemake --latency-wait 300 -j 5 --cluster "sbatch --mem={resources.mem_mb} --time {resources.runtime_min} --cpus-per-task {threads} --job-name={rule}.%j --output snakemake_cluster_submit_log/{rule}.%j.out --mail-type=FAIL"

This assumes that the cluster you are using is running SLURM. If this is not the case, you have to adjust the command after --cluster. The log information of each job will be safed in the snakemake_cluster_submit_log directory. This directory will not be created automatically.

-j specifies the number of jobs/rules should be submitted in parallel.

I recommand running this command in a detached session with tmux or screen.

Output

Below is the output of the tree command, after the workflow has finished for one patient H005-00ML. Usually you would include many patients simultaneously (>50). This is just to illustrate the created output files.

.
├── cohort
│ ├── benchmark
│ │ ├── ApplyVQSR_indel.txt
│ │ ├── ApplyVQSR_snp.txt
│ │ ├── CombineGVCFs.txt
│ │ ├── GenotypeGVCFs.txt
│ │ ├── MergeCohortVCFs.txt
│ │ ├── SelectVariants.txt
│ │ ├── VEP.txt
│ │ ├── VQSR_indel.txt
│ │ └── VQSR_snp.txt
│ ├── cohort.recalibrated.pass.vep.vcf.gz
│ ├── cohort.recalibrated.pass.vep.vcf.gz_summary.html
│ ├── cohort.recalibrated.vcf.gz
│ ├── cohort.recalibrated.vcf.gz.tbi
│ └── logs
│     ├── ApplyVQSR_indel.out
│     ├── ApplyVQSR_snp.out
│     ├── CombineGVCFs
│     ├── CombineGVCFs.1.out
│     ├── CombineGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── CombineGVCFs.Y.out
│     ├── GenotypeGVCFs.1.out
│     ├── GenotypeGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── GenotypeGVCFs.Y.out
│     ├── MakeSitesOnly.out
│     ├── MergeCohortVCFs.out
│     ├── SelectVariants.err
│     ├── VEP.out
│     ├── VQSR_indel.out
│     └── VQSR_snp.out
├── config
│ ├── config_wgs.yaml
│ └── resources.yaml
├── H005-00ML
│ ├── benchmark
│ │ ├── ApplyBQSR.txt
│ │ ├── BaseRecalibrator.txt
│ │ ├── GatherBQSRReports.txt
│ │ ├── GatherRecalBamFiles.txt
│ │ ├── HaplotypeCaller.txt
│ │ ├── IndexBam.txt
│ │ ├── MergeHaplotypeCaller.txt
│ │ └── SortBam.txt
│ ├── H005-00ML.germline.merged.g.vcf.gz
│ ├── H005-00ML.germline.merged.g.vcf.gz.tbi
│ └── logs
│     ├── ApplyBQSR
│     ├── ApplyBQSR.0000-scattered.interval_list.out
│     ├── ApplyBQSR.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── ApplyBQSR.0049-scattered.interval_list.out
│     ├── BaseRecalibrator
│     ├── BaseRecalibrator.0000-scattered.interval_list.out
│     ├── BaseRecalibrator.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── BaseRecalibrator.0049-scattered.interval_list.out
│     ├── GatherBQSRReports.out
│     ├── GatherRecalBamFiles.out
│     ├── HaplotypeCaller
│     ├── HaplotypeCaller.0000-scattered.interval_list.out
│     ├── HaplotypeCaller.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── HaplotypeCaller.0049-scattered.interval_list.out
│     ├── IndexBam.out
│     ├── MergeHaplotypeCaller.out
│     └── SortBam.out
├── rules
│ ├── BaseQualityScoreRecalibration.smk
│ ├── JointGenotyping.smk
│ ├── VEP.smk
│ └── VQSR.smk
├── Snakefile
├── snakemake_cluster_submit_log
│ ├── ApplyBQSR.24720887.out
│ ├── ApplyVQSR_snp.24777265.out
│ ├── BaseRecalibrator.24710227.out
│ ├── CombineGVCFs.24772984.out
│ ├── GatherBQSRReports.24715726.out
│ ├── GatherRecalBamFiles.24722478.out
│ ├── GenotypeGVCFs.24773026.out
│ ├── HaplotypeCaller.24769848.out
│ ├── IndexBam.24768728.out
│ ├── MergeCohortVCFs.24776018.out
│ ├── MergeHaplotypeCaller.24772183.out
│ ├── SelectVariants.24777733.out
│ ├── SortBam.24768066.out
│ ├── VEP.24777739.out
│ ├── VQSR_indel.24776035.out
│ └── VQSR_snp.24776036.out

For each analyzed patient, a seperate directory gets created. Along with the patient specific gvcf file, this directory contains log files for all the processing steps that were performed for that patient (log directory) as well as benchmarks for each rule, e.g. how long the step took or how much CPU/RAM was used (benchmark directory).

The cohort directory contains the multi-sample VCF file, which gets created after performing the joint variant calling. The cohort.recalibrated.vcf.gz is the product of GATKs Variant Quality Score Recalibration. The cohort.recalibrated.pass.vep.vcf.gz is the filtered and VEP annotated version of cohort.recalibrated.vcf.gz (only variants with PASS are kept).

For most applications, the cohort.recalibrated.pass.vep.vcf.gz file, is the file you want to continue working with.

Uniform Manifold Approximation and Projection

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu

Leland McInnes 6k Jan 08, 2023
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
Friday Night Funkin - converts a chart from 4/4 time to 6/8 time, or from regular to swing tempo.

Chart to swing converter As seen in https://twitter.com/i_winxd/status/1462220493558366214 A program written in python that converts a chart from 4/4

5 Dec 23, 2022
Create charts with Python in a very similar way to creating charts using Chart.js

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the t

Nicolas H 68 Dec 08, 2022
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
Make sankey, alluvial and sankey bump plots in ggplot

The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in ggplot2

David Sjoberg 156 Jan 03, 2023
daily report of @arkinvest ETF activity + data collection

ark_invest daily weekday report of @arkinvest ETF activity + data collection This script was created to: Extract and save daily csv's from ARKInvest's

T D 27 Jan 02, 2023
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
Homework 2: Matplotlib and Data Visualization

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

vispy 3k Jan 03, 2023
Profile and test to gain insights into the performance of your beautiful Python code

Profile and test to gain insights into the performance of your beautiful Python code View Demo - Report Bug - Request Feature QuickPotato in a nutshel

Joey Hendricks 138 Dec 06, 2022