EfficientNetv2 TensorRT int8

Overview

EfficientNetv2_TensorRT_int8

EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch

环境配置

ubuntu:18.04

cuda:11.0

cudnn:8.0

tensorrt:7.2.16

OpenCV:3.4.2

cuda,cudnn,tensorrt和OpenCV安装包可以从如下链接下载:

链接: https://pan.baidu.com/s/1XSzHJ1kPXO0PrAMAF6uNyA 密码: b88e

cuda安装

如果系统有安装驱动,运行如下命令卸载

sudo apt-get purge nvidia*

禁用nouveau,运行如下命令

sudo vim /etc/modprobe.d/blacklist.conf

在末尾添加

blacklist nouveau

然后执行

sudo update-initramfs -u

chmod +x cuda_11.0.2_450.51.05_linux.run

sudo ./cuda_11.0.2_450.51.05_linux.run

是否接受协议: accept

然后选择Install

最后回车

vim ~/.bashrc 添加如下内容:

export PATH=/usr/local/cuda-11.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH

source .bashrc 激活环境

cudnn 安装

tar -xzvf cudnn-11.0-linux-x64-v8.0.4.30.tgz

cd cuda/include

sudo cp *.h /usr/local/cuda-11.0/include

cd cuda/lib64

sudo cp libcudnn* /usr/local/cuda-11.0/lib64

tensorrt及OpenCV安装

定位到用户根目录

tar -xzvf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz

cd TensorRT-7.2.1.6/python,该目录有4个python版本的tensorrt安装包

sudo pip3 install tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl(根据自己的python版本安装)

pip install pycuda 安装python版本的cuda

定位到用户根目录

tar -xzvf opencv-3.4.2.zip 以备推理调用

efficientnetv2模型训练以及转换onnx

定位到用户根目录

git clone https://github.com/Wulingtian/EfficientNetv2_TensorRT_int8.git

cd EfficientNetv2_TensorRT_int8

vim train.py 修改IMAGENET_TRAINSET_SIZE参数 指定训练图片的数量

根据自己的训练数据及配置设置data(数据集路径),epochs,lr,batch-size等参数

python train.py,开始训练,模型保存在当前目录,名为model_best.pth.tar

vim export_onnx.py

设置weights_file(训练得到的模型),output_file(输出模型名称),img_size(图片输入大小),batch_size(推理的batch)

python export_onnx.py 得到onnx模型

onnx模型转换为 int8 tensorrt引擎

cd EfficientNetv2_TensorRT_int8/effnetv2_tensorrt_int8_tools

vim convert_trt_quant.py 修改如下参数

BATCH_SIZE 模型量化一次输入多少张图片

BATCH 模型量化次数

height width 输入图片宽和高

CALIB_IMG_DIR 量化图片路径(把训练的图片放到一个文件夹下,然后把这个文件夹设置为此参数,注意BATCH_SIZE*BATCH要小于或等于训练图片数量)

onnx_model_path onnx模型路径(上面运行export_onnx.py得到的onnx模型)

python convert_trt_quant.py 量化后的模型存到models_save目录下

TensorRT模型推理

cd EfficientNetv2_TensorRT_int8/effnetv2_tensorrt_int8

vim CMakeLists.txt

修改USER_DIR参数为自己的用户根目录

vim effnetv2_infer.cc修改如下参数

output_name effnetv2模型有1个输出

我们可以通过netron查看模型输出名

pip install netron 安装netron

vim netron_effnetv2.py 把如下内容粘贴

    import netron

    netron.start('此处填充简化后的onnx模型路径', port=3344)

python netron_effnetv2.py 即可查看 模型输出名

trt_model_path 量化的tensorrt推理引擎(models_save目录下trt后缀的文件)

test_img 测试图片路径

INPUT_W INPUT_H 输入图片宽高

NUM_CLASS 训练的模型有多少类

参数配置完毕

mkdir build

cd build

cmake ..

make

./Effnetv2sEngine 输出平均推理时间,实测1070显卡平均推理时间3.8ms一帧;至此,部署完成!

分享一下我的训练集(猫狗二分类数据)及量化数据,链接如下:

链接: https://pan.baidu.com/s/1Mh6GxTLoXRTCRQh-TPUc3Q 密码: 3dt3
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022