EfficientNetv2 TensorRT int8

Overview

EfficientNetv2_TensorRT_int8

EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch

环境配置

ubuntu:18.04

cuda:11.0

cudnn:8.0

tensorrt:7.2.16

OpenCV:3.4.2

cuda,cudnn,tensorrt和OpenCV安装包可以从如下链接下载:

链接: https://pan.baidu.com/s/1XSzHJ1kPXO0PrAMAF6uNyA 密码: b88e

cuda安装

如果系统有安装驱动,运行如下命令卸载

sudo apt-get purge nvidia*

禁用nouveau,运行如下命令

sudo vim /etc/modprobe.d/blacklist.conf

在末尾添加

blacklist nouveau

然后执行

sudo update-initramfs -u

chmod +x cuda_11.0.2_450.51.05_linux.run

sudo ./cuda_11.0.2_450.51.05_linux.run

是否接受协议: accept

然后选择Install

最后回车

vim ~/.bashrc 添加如下内容:

export PATH=/usr/local/cuda-11.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH

source .bashrc 激活环境

cudnn 安装

tar -xzvf cudnn-11.0-linux-x64-v8.0.4.30.tgz

cd cuda/include

sudo cp *.h /usr/local/cuda-11.0/include

cd cuda/lib64

sudo cp libcudnn* /usr/local/cuda-11.0/lib64

tensorrt及OpenCV安装

定位到用户根目录

tar -xzvf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz

cd TensorRT-7.2.1.6/python,该目录有4个python版本的tensorrt安装包

sudo pip3 install tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl(根据自己的python版本安装)

pip install pycuda 安装python版本的cuda

定位到用户根目录

tar -xzvf opencv-3.4.2.zip 以备推理调用

efficientnetv2模型训练以及转换onnx

定位到用户根目录

git clone https://github.com/Wulingtian/EfficientNetv2_TensorRT_int8.git

cd EfficientNetv2_TensorRT_int8

vim train.py 修改IMAGENET_TRAINSET_SIZE参数 指定训练图片的数量

根据自己的训练数据及配置设置data(数据集路径),epochs,lr,batch-size等参数

python train.py,开始训练,模型保存在当前目录,名为model_best.pth.tar

vim export_onnx.py

设置weights_file(训练得到的模型),output_file(输出模型名称),img_size(图片输入大小),batch_size(推理的batch)

python export_onnx.py 得到onnx模型

onnx模型转换为 int8 tensorrt引擎

cd EfficientNetv2_TensorRT_int8/effnetv2_tensorrt_int8_tools

vim convert_trt_quant.py 修改如下参数

BATCH_SIZE 模型量化一次输入多少张图片

BATCH 模型量化次数

height width 输入图片宽和高

CALIB_IMG_DIR 量化图片路径(把训练的图片放到一个文件夹下,然后把这个文件夹设置为此参数,注意BATCH_SIZE*BATCH要小于或等于训练图片数量)

onnx_model_path onnx模型路径(上面运行export_onnx.py得到的onnx模型)

python convert_trt_quant.py 量化后的模型存到models_save目录下

TensorRT模型推理

cd EfficientNetv2_TensorRT_int8/effnetv2_tensorrt_int8

vim CMakeLists.txt

修改USER_DIR参数为自己的用户根目录

vim effnetv2_infer.cc修改如下参数

output_name effnetv2模型有1个输出

我们可以通过netron查看模型输出名

pip install netron 安装netron

vim netron_effnetv2.py 把如下内容粘贴

    import netron

    netron.start('此处填充简化后的onnx模型路径', port=3344)

python netron_effnetv2.py 即可查看 模型输出名

trt_model_path 量化的tensorrt推理引擎(models_save目录下trt后缀的文件)

test_img 测试图片路径

INPUT_W INPUT_H 输入图片宽高

NUM_CLASS 训练的模型有多少类

参数配置完毕

mkdir build

cd build

cmake ..

make

./Effnetv2sEngine 输出平均推理时间,实测1070显卡平均推理时间3.8ms一帧;至此,部署完成!

分享一下我的训练集(猫狗二分类数据)及量化数据,链接如下:

链接: https://pan.baidu.com/s/1Mh6GxTLoXRTCRQh-TPUc3Q 密码: 3dt3
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Ian Covert 130 Jan 01, 2023
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023