A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

Overview

CapsNet-Tensorflow

Contributions welcome License Gitter

A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

capsVSneuron

Notes:

  1. The current version supports MNIST and Fashion-MNIST datasets. The current test accuracy for MNIST is 99.64%, and Fashion-MNIST 90.60%, see details in the Results section
  2. See dist_version for multi-GPU support
  3. Here(知乎) is an article explaining my understanding of the paper. It may be helpful in understanding the code.

Important:

If you need to apply CapsNet model to your own datasets or build up a new model with the basic block of CapsNet, please follow my new project CapsLayer, which is an advanced library for capsule theory, aiming to integrate capsule-relevant technologies, provide relevant analysis tools, develop related application examples, and promote the development of capsule theory. For example, you can use capsule layer block in your code easily with the API capsLayer.layers.fully_connected and capsLayer.layers.conv2d

Requirements

  • Python
  • NumPy
  • Tensorflow>=1.3
  • tqdm (for displaying training progress info)
  • scipy (for saving images)

Usage

Step 1. Download this repository with git or click the download ZIP button.

$ git clone https://github.com/naturomics/CapsNet-Tensorflow.git
$ cd CapsNet-Tensorflow

Step 2. Download MNIST or Fashion-MNIST dataset. In this step, you have two choices:

  • a) Automatic downloading with download_data.py script
$ python download_data.py   (for mnist dataset)
$ python download_data.py --dataset fashion-mnist --save_to data/fashion-mnist (for fashion-mnist dataset)
  • b) Manual downloading with wget or other tools, move and extract dataset into data/mnist or data/fashion-mnist directory, for example:
$ mkdir -p data/mnist
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
$ gunzip data/mnist/*.gz

Step 3. Start the training(Using the MNIST dataset by default):

$ python main.py
$ # or training for fashion-mnist dataset
$ python main.py --dataset fashion-mnist
$ # If you need to monitor the training process, open tensorboard with this command
$ tensorboard --logdir=logdir
$ # or use `tail` command on linux system
$ tail -f results/val_acc.csv

Step 4. Calculate test accuracy

$ python main.py --is_training=False
$ # for fashion-mnist dataset
$ python main.py --dataset fashion-mnist --is_training=False

Note: The default parameters of batch size is 128, and epoch 50. You may need to modify the config.py file or use command line parameters to suit your case, e.g. set batch size to 64 and do once test summary every 200 steps: python main.py --test_sum_freq=200 --batch_size=48

Results

The pictures here are plotted by tensorboard and my tool plot_acc.R

  • training loss

total_loss margin_loss reconstruction_loss

Here are the models I trained and my talk and something else:

Baidu Netdisk(password:ahjs)

  • The best val error(using reconstruction)
Routing iteration 1 3 4
val error 0.36 0.36 0.41
Paper 0.29 0.25 -

test_acc

My simple comments for capsule

  1. A new version neural unit(vector in vector out, not scalar in scalar out)
  2. The routing algorithm is similar to attention mechanism
  3. Anyway, a great potential work, a lot to be built upon

My weChat:

my_wechat

Reference

Owner
Huadong Liao
Explore Nature from an Omics Perspective
Huadong Liao
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022