Data pipelines for both TensorFlow and PyTorch!

Overview

rapidnlp-datasets

Python package PyPI version Python

Data pipelines for both TensorFlow and PyTorch !

If you want to load public datasets, try:

If you want to load local, personal dataset with minimized boilerplate, use rapidnlp-datasets!

installation

pip install -U rapidnlp-datasets

If you work with PyTorch, you should install PyTorch first.

If you work with TensorFlow, you should install TensorFlow first.

Usage

Here are few examples to show you how to use this library.

sequence-classification-quickstart

In PyTorch,

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForSequenceClassification
>>> dataset = DatasetForSequenceClassification.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForSequenceClassifiation
>>> dataset, d = TFDatasetForSequenceClassifiation.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/sequence_classification.tfrecord")
2021-12-08 14:52:41,295    INFO             utils.py  128] Finished to write 2 examples to tfrecords.
>>> dataset = TFDatasetForSequenceClassifiation.from_tfrecord_files("testdata/sequence_classification.tfrecord")
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

question-answering-quickstart

In PyTorch:

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForQuestionAnswering
>>>
>>> dataset = DatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForQuestionAnswering
>>> dataset, d = TFDatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
2021-12-08 15:09:06,747    INFO question_answering_dataset.py  101] Read 3 examples in total.
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/qa.tfrecord")
2021-12-08 15:09:31,329    INFO             utils.py  128] Finished to write 3 examples to tfrecords.
>>> dataset = TFDatasetForQuestionAnswering.from_tfrecord_files(
        "testdata/qa.tfrecord",
        batch_size=32,
        padding="batch",
    )
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

token-classification-quickstart

masked-language-models-quickstart

simcse-quickstart

You might also like...
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

🤗 Push your spaCy pipelines to the Hugging Face Hub
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

Machine learning framework for both deep learning and traditional algorithms
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

A transformer which can randomly augment VOC format dataset (both image and bbox) online.
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Releases(v0.2.0)
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022