Data pipelines for both TensorFlow and PyTorch!

Overview

rapidnlp-datasets

Python package PyPI version Python

Data pipelines for both TensorFlow and PyTorch !

If you want to load public datasets, try:

If you want to load local, personal dataset with minimized boilerplate, use rapidnlp-datasets!

installation

pip install -U rapidnlp-datasets

If you work with PyTorch, you should install PyTorch first.

If you work with TensorFlow, you should install TensorFlow first.

Usage

Here are few examples to show you how to use this library.

sequence-classification-quickstart

In PyTorch,

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForSequenceClassification
>>> dataset = DatasetForSequenceClassification.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForSequenceClassifiation
>>> dataset, d = TFDatasetForSequenceClassifiation.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/sequence_classification.tfrecord")
2021-12-08 14:52:41,295    INFO             utils.py  128] Finished to write 2 examples to tfrecords.
>>> dataset = TFDatasetForSequenceClassifiation.from_tfrecord_files("testdata/sequence_classification.tfrecord")
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

question-answering-quickstart

In PyTorch:

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForQuestionAnswering
>>>
>>> dataset = DatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForQuestionAnswering
>>> dataset, d = TFDatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
2021-12-08 15:09:06,747    INFO question_answering_dataset.py  101] Read 3 examples in total.
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/qa.tfrecord")
2021-12-08 15:09:31,329    INFO             utils.py  128] Finished to write 3 examples to tfrecords.
>>> dataset = TFDatasetForQuestionAnswering.from_tfrecord_files(
        "testdata/qa.tfrecord",
        batch_size=32,
        padding="batch",
    )
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

token-classification-quickstart

masked-language-models-quickstart

simcse-quickstart

You might also like...
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

🤗 Push your spaCy pipelines to the Hugging Face Hub
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

Machine learning framework for both deep learning and traditional algorithms
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

A transformer which can randomly augment VOC format dataset (both image and bbox) online.
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Releases(v0.2.0)
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

âš¾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022