Transformer model implemented with Pytorch

Overview

transformer-pytorch

Transformer model implemented with Pytorch

Attention is all you need-[Paper]

Architecture

Transformer


Self-Attention

Attention

self_attention.py

[N, len, heads, head_dim] values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) queries = queries.reshape(N, query_len, self.heads, self.head_dim) # Einsum does matrix mult. for query*keys for each training example # with every other training example, don't be confused by einsum # it's just how I like doing matrix multiplication & bmm energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # queries shape: (N, query_len, heads, heads_dim), # keys shape: (N, key_len, heads, heads_dim) # energy: (N, heads, query_len, key_len) # Mask padded indices so their weights become 0 if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) # Normalize energy values similarly to seq2seq + attention # so that they sum to 1. Also divide by scaling factor for # better stability attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3) # attention shape: (N, heads, query_len, key_len) out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads * self.head_dim ) # attention shape: (N, heads, query_len, key_len) # values shape: (N, value_len, heads, heads_dim) # out after matrix multiply: (N, query_len, heads, head_dim), then # we reshape and flatten the last two dimensions. out = self.fc_out(out) # Linear layer doesn't modify the shape, final shape will be # (N, query_len, embed_size) return out ">
 class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads      = heads
        self.head_dim   = embed_size // heads

        assert (
                self.head_dim * heads == embed_size
        ), "Embedding size needs to be divisible by heads"

        self.values  = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.keys    = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.fc_out  = nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        # Get number of training examples
        N = query.shape[0]

        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        values  = self.values(values)
        keys    = self.keys(keys)
        queries = self.queries(query)
        
        # Split the embedding into self.heads different pieces
        # Multi head
        # [N, len, embed_size] --> [N, len, heads, head_dim]
        values    = values.reshape(N, value_len, self.heads, self.head_dim)
        keys      = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries   = queries.reshape(N, query_len, self.heads, self.head_dim)

        # Einsum does matrix mult. for query*keys for each training example
        # with every other training example, don't be confused by einsum
        # it's just how I like doing matrix multiplication & bmm
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        # queries shape: (N, query_len, heads, heads_dim),
        # keys shape: (N, key_len, heads, heads_dim)
        # energy: (N, heads, query_len, key_len)

        # Mask padded indices so their weights become 0
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))

        # Normalize energy values similarly to seq2seq + attention
        # so that they sum to 1. Also divide by scaling factor for
        # better stability
        attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
        # attention shape: (N, heads, query_len, key_len)

        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads * self.head_dim
        )
        # attention shape: (N, heads, query_len, key_len)
        # values shape: (N, value_len, heads, heads_dim)
        # out after matrix multiply: (N, query_len, heads, head_dim), then
        # we reshape and flatten the last two dimensions.

        out = self.fc_out(out)
        # Linear layer doesn't modify the shape, final shape will be
        # (N, query_len, embed_size)

        return out

Encoder Block

Encoder

encoder_block.py

class EncoderBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(EncoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1     = nn.LayerNorm(embed_size)
        self.norm2     = nn.LayerNorm(embed_size)

        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion * embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion * embed_size, embed_size),
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)

        # Add skip connection, run through normalization and finally dropout
        x       = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out     = self.dropout(self.norm2(forward + x))
        return out

Encoder

Encoder

encoder.py

class Encoder(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
    ):

        super(Encoder, self).__init__()
        self.embed_size         = embed_size
        self.device             = device
        self.word_embedding     = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                EncoderBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion,
                )
                for _ in range(num_layers)
            ]
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        out = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        # In the Encoder the query, key, value are all the same, it's in the
        # decoder this will change. This might look a bit odd in this case.
        for layer in self.layers:
            out = layer(out, out, out, mask)

        return out

Decoder Block

DecoderBlock

docoder_block.py

class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.norm              = nn.LayerNorm(embed_size)
        self.attention         = SelfAttention(embed_size, heads=heads)
        self.transformer_block = EncoderBlock(
            embed_size, heads, dropout, forward_expansion
        )
        self.dropout           = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query     = self.dropout(self.norm(attention + x))
        out       = self.transformer_block(value, key, query, src_mask)
        return out

Decoder

Decoder

decoder.py

class Decoder(nn.Module):
    def __init__(
            self,
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
    ):
        super(Decoder, self).__init__()
        self.device             = device
        self.word_embedding     = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
                for _ in range(num_layers)
            ]
        )
        
        self.dropout = nn.Dropout(dropout)
        self.fc_out  = nn.Linear(embed_size, trg_vocab_size)


    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions     = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x             = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out

Transformer

transformer.py

class Transformer(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            trg_vocab_size,
            src_pad_idx,
            trg_pad_idx,
            embed_size=512,
            num_layers=6,
            forward_expansion=4,
            heads=8,
            dropout=0,
            device="cpu",
            max_length=100,
    ):

        super(Transformer, self).__init__()

        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
        )

        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device      = device

    def make_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        # (N, 1, 1, src_len)
        return src_mask.to(self.device)

    def make_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )

        return trg_mask.to(self.device)

    def forward(self, src, trg):
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        out = self.decoder(trg, enc_src, src_mask, trg_mask)
        return out

Authors

Owner
Mingu Kang
SW Engineering / ML / DL / Blockchain Dept. of Software Engineering, Jeonbuk National University
Mingu Kang
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022