Global-Local Attention for Emotion Recognition

Overview

Global-Local Attention for Emotion Recognition

Requirements

  • Python 3
  • Install tensorflow (or tensorflow-gpu) >= 2.0.0
  • Install some other packages
pip install cython
pip install opencv-python==4.3.0.36 matplotlib numpy==1.18.5 dlib

Dataset

We provide the NCAER-S dataset with original images and extracted faces (a .txt file with 4 bounding box coordinate) in the NCAERS dataset.

The dataset can be downloaded at Google Drive

Note that the dataset and label should have structure like the followings:

NCAER-S 
│
└───images
│   │
│   └───class_1
│   │   │   img1.jpg
│   │   │   img2.jpg
│   │   │   ...
│   └───class_2
│       │   img1.jpg
│       │   img2.jpg
│       │   ...
│   
└───crop
│   │
│   └───class_1
│   │   │   img1.txt
│   │   │   img2.txt
│   │   │   ...
│   └───class_2
│       │   img1.txt
│       │   img2.txt
│       │   ...

Running

Our code supports these types of execution with argument -m or --mode:

#extract faces from <train, val or test> dataset (specified in config.py)
python run.py -m extract dataset_type=train

#train the model with config specified in the config.py
python run.py -m train 

#evaluate the trained model on the dataset <dataset_type>
python run.py -m eval --dataset_type=test --trained_weights=path/to/weights

Evaluation

Our trained model is available at weights/glamor-net/Model.

  • Firstly, please download the dataset and extract it into "data/" directory.
  • Then specified the path to the test data (images and crop):
config = config.copy({
    'test_images': 'path_to_test_images',
    'test_crop':   'path_to_test_cropped_faces' #(.txt files),
})
  • Run this command to evaluate the model. We are using the classification accuracy as our evaluation metric.
# Evaluate our model in the test set
python run.py -m eval --dataset_type=test --trained_weights=weights/glamor-net/Model

Training

Firstly please extract the faces from train set (val set is optional)

  • Specify the path to the dataset in config.py (train_images, val_images, test_images)
  • Specify the desired face-extracted output path in config.py (train_crop, val_crop, test_crop)
config = config.copy({

    'train_images': 'path_to_training_images',
    'train_crop':   'path_to_training_cropped_faces' #(.txt files),

    'val_images': 'path_to_validation_images',
    'val_crop':   'path_to_validation_cropped_faces' #(.txt files)

})
  • Perform face extraction on both dataset_type by running the commands:
python run.py -m extract --dataset_type=<train, val or test>

Start training:

# Train a new model from sratch
python run.py -m train 

# Continue training a model that you had trained earlier
python run.py -m train --resume=path/to/trained_weights

# Resume the last checkpoint model
python run.py -m train --resume=last

Prediction

We support prediction on single image or on images in a directory by running this command:

# Predict on single image
python predict.py --trained_weights=weights/glamor-net/Model --input=test_images/1.jpg --output=path/to/out/directory

# Predict on images in directory
python predict.py --trained_weights=weights/glamor-net/Model --input=test_images/ --output=out/

Use the help option to see a description of all available command line arguments

Owner
Minh Nhat Le
Hi
Minh Nhat Le
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022