Doing the asl sign language classification on static images using graph neural networks.

Overview

SignLangGNN

When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL sign language classification problem. The twist here is we used the graph generated from the hand images using mediapipe. And the graph I got, I extrated the {x, y, z} co-ordinates of the nodes and also the edge index for the connecteion and translated this image classification problem to a graph classiciation problem.

Project Structure

--------- Data
            |___ CSVs # containing the co-ordinates of per images
            |___ raw
                   |___ train.csv
                   |___ valid.csv
                   |___ test.csv 
            |___ ImageData
                   |___ asl_alphabet_test
                            |___ A/
                            |___ B/ 
                            ....
                            |___ space

                   |___ asl_alphabet_train
            |
            |___ Models # the GNN models
            |___ src
                   |__ dataset.py # pyg custom data
                   |__ train.py   # train loop
                   |__ utils.py   # different utility functions
            |
            |___ main.py # from data to train
            |___ run.py  # real time video visualization

I used PyTorch geometric and PyTorch for the project. To view the results in details head over to the IPYNB folder and see the first IPYNB file. To run this project first clone this repo using this command:

git clone https://github.com/Anindyadeep/SignLangGNN

After that run the main.py using this command. Other things will be managed automatically, provided al,l the essential libraries are installed.

python3 main.py

Initial Results

The traning and validation process went smooth as with a very simple base model it gave an train acc of 0.85 and validation acc of 0.86. It also provided an test acc of 0.84. The model was run for 8 epochs. The model also gets confused with some sort of examples and we can say that it currently suffers from adverserial attacks.

Improvements

These are the improvements we can do with this project:

  1. Improved GNN models. We can make more robust and complex models and improve the performance.

  2. Adding edge features. Some of the edge features like distance between two nodes and the angle between two nodes could produce some potential improvements to the performance of our model.

Future Works

Using Temporal Graph Neural Nets could make more robust and accurate model for this kind of problem. But for that we need temporal data like videos instaed of images, so that we could generate static temporal graphs and compute on them as a dynamic graph sequence problem.

Owner
Deep learning enthusiast, like to know something new every time....
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022