PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

Related tags

AlgorithmsPICO
Overview

GitHub license Read the Docs GitHub issues GitHub forks GitHub stars

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intelligence Lab (MAIL) in East China Normal University and the AI Research Institute in Geekplus Technology Co., Ltd. PICO is constructed based on the framework of PRIMAL:Pathfinding via Reinforcement and Imitation Multi-Agent Learning and focuses more on the collision avoidance rather than manual post-processing when collision occurs. Exploiting the design of decentralized communication and implicit priority in these secenarios benifits better path finding. To emphasis, more details about PICO can be found in our paper Multi-Agent Path Finding with Prioritized Communication Learning, which is accepted by ICRA 2022.

Distributed Assembly

Reinforcement learning code to train multiple agents to collaboratively plan their paths in a 2D grid world.

Key Components of PICO

  • pico_training.py: Multi-agent training code. Training runs on GPU by default, change line "with tf.device("/gpu:0"):" to "with tf.device("/cpu:0"):" to train on CPU (much slower).Researchers can also flexibly customized their configuration in this file.
  • mapf_gym.py: Multi-agent path planning gym environment, in which agents learn collective path planning.
  • pico_testing.py: Code to run systematic validation tests of PICO, pulled from the saved_environments folder as .npy files and output results in a given folder (by default: test_result).

Installation

git clone https://github.com/mail-ecnu/PICO.git
cd PICO
conda env create -f conda_env.yml
conda activate PICO-dev

Before compilation: compile cpp_mstar code

  • cd into the od_mstar3 folder.
  • python3 setup.py build_ext (may need --inplace as extra argument).
  • copy so object from build/lib.*/ at the root of the od_mstar3 folder.
  • Check by going back to the root of the git folder, running python3 and "import cpp_mstar"

Quick Examples

pico_training.py:

episode_count          = 0
MAX_EPISODE            = 20
EPISODE_START          = episode_count
gamma                  = .95 # discount rate for advantage estimation and reward discounting
#moved network parameters to ACNet.py
EXPERIENCE_BUFFER_SIZE = 128
GRID_SIZE              = 11 #the size of the FOV grid to apply to each agent
ENVIRONMENT_SIZE       = (10,20)#(10,70) the total size of the environment (length of one side)
OBSTACLE_DENSITY       = (0,0.3) #(0,0.5) range of densities
DIAG_MVMT              = False # Diagonal movements allowed?
a_size                 = 5 + int(DIAG_MVMT)*4
SUMMARY_WINDOW         = 10
NUM_META_AGENTS        = 3
NUM_THREADS            = 8 #int(multiprocessing.cpu_count() / (2 * NUM_META_AGENTS))
# max_episode_length     = 256 * (NUM_THREADS//8)
max_episode_length     = 256
NUM_BUFFERS            = 1 # NO EXPERIENCE REPLAY int(NUM_THREADS / 2)
EPISODE_SAMPLES        = EXPERIENCE_BUFFER_SIZE # 64
LR_Q                   = 2.e-5
ADAPT_LR               = True
ADAPT_COEFF            = 5.e-5 #the coefficient A in LR_Q/sqrt(A*steps+1) for calculating LR
load_model             = False
RESET_TRAINER          = False
gifs_path              = 'gifs'
from datetime import datetime
TIMESTAMP = "{0:%Y-%m-%dT%H-%M/}".format(datetime.now())

GLOBAL_NET_SCOPE       = 'global'

#Imitation options
PRIMING_LENGTH         = 2500    #0 number of episodes at the beginning to train only on demonstrations
DEMONSTRATION_PROB     = 0.5

Then

python pico_training.py

Custom testing

Edit pico_testing.py according to the training setting. By default, the model is loaded from the model folder.

Then

python pico_testing.py

Requirements

  • Python 3.4
  • Cython 0.28.4
  • OpenAI Gym 0.9.4
  • Tensorflow 1.3.1
  • Numpy 1.13.3
  • matplotlib
  • imageio (for GIFs creation)
  • tk
  • networkx (if using od_mstar.py and not the C++ version)

Citing our work

If you use this repo in your work, please consider citing the corresponding paper (first two authors contributed equally):

@InProceedings{lichen2022mapf,
  title =    {Multi-Agent Path Finding with Prioritized Communication Learning},
  author =   {Wenhao, Li* and Hongjun, Chen* and Bo, Jin and Wenzhe, Tan and Hongyuan, Zha and Xiangfeng, Wang},
  booktitle =    {ICRA},
  year =     {2022},
  pdf =      {https://arxiv.org/pdf/2202.03634},
  url =      {https://arxiv.org/abs/2202.03634},
}

License

Licensed under the MIT License.

Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
:computer: Data Structures and Algorithms in Python

Algorithms in Python Implementations of a few algorithms and datastructures for fun and profit! Completed Karatsuba Multiplication Basic Sorting Rabin

Prakhar Srivastav 2.9k Jan 01, 2023
Genius Square puzzle solver in Python

Genius Square puzzle solver in Python

James 3 Dec 15, 2022
All Algorithms implemented in Python

The Algorithms - Python All algorithms implemented in Python (for education) These implementations are for learning purposes only. Therefore they may

The Algorithms 150.6k Jan 03, 2023
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

Mohsen Arzani 4 Sep 22, 2021
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
RRT algorithm and its optimization

RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT

Sarannya Bhattacharya 7 Mar 06, 2022
Implements (high-dimenstional) clustering algorithm

Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)

Eric Elmoznino 5 Dec 27, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
Xor encryption and decryption algorithm

Folosire: Pentru encriptare: python encrypt.py parola fișier pentru criptare fișier encriptat(de tip binar) Pentru decriptare: python decrypt.p

2 Dec 05, 2021
My own Unicode compression algorithm

Zee Code ZCode is a custom compression algorithm I originally developed for a competition held for the Spring 2019 Datastructures and Algorithms cours

Vahid Zehtab 2 Oct 20, 2021
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors.

RiskyPortfolioGenerator Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors. Working in a group, we crea

Victoria Zhao 2 Jan 13, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021