sudoku solver using CSP forward-tracking algorithms.

Related tags

Algorithmssudoku
Overview

Sudoku

sudoku solver using CSP forward-tracking algorithms.

Description

Sudoku is a logic-based game that consists of 9 3x3 grids that create one large 9x9 grid. The rules of the game are simple: each row has all the numbers from 1-9, each column has all the numbers from 1-9, each individual 3x3 box has all the numbers from 1-9. The start state is the partially filled out board while the end state is all the tiles in the board filled according to the rules provided above.

Features

For each position, p, of the 9 × 9 grid (ie. sudoku puzzle), determine the three constraint sets that it falls into. For each position, p, of the 9 × 9 grid, determine (and put into a list or dictionary) all the other positions that are in a common constraint set with p. These positions are the NEIGHBORS of p.

NEIGHBORS = {p:[ indices in same row, col, and subblock ]}

A simple checkSum(pzl) function: sum the ascii value of each symbol in your puzzle and subtract (the length of the puzzle) * (the ascii value of the min symbol in your puzzle). This is a simple way of double checking the Sudoku solution correctness.

Part 1: SudokuSingle

Solving a sudoku puzzle using the backtracking search algorithm.

Part 2: SudokuMass

Solving sudokus from a file. The algorithm implements forward-checking, making it faster.

Output format: display the puzzle number (starting from 1) and puzzle, and on a second line the solution and the checksum. After solving all puzzles in the input file, print time for the all solutions.

Owner
Cindy
web dev and ai enthusiast
Cindy
🧬 Performant Evolutionary Algorithms For Python with Ray support

🧬 Performant Evolutionary Algorithms For Python with Ray support

Nathan 49 Oct 20, 2022
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 03, 2023
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
Path finding algorithm visualizer with python

path-finding-algorithm-visualizer ~ click on the grid to place the starting block and then click elsewhere to add the end block ~ click again to place

izumi 1 Oct 31, 2021
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.

Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy

0 Dec 26, 2021
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
Algorithms-in-Python - Programs related to DSA in Python for placement practice

Algorithms-in-Python Programs related to DSA in Python for placement practice CO

MAINAK CHAUDHURI 2 Feb 02, 2022
8 Puzzle with A* , Greedy & BFS Search in Python

8_Puzzle 8 Puzzle with A* , Greedy & BFS Search in Python Python Install Python from here. Pip Install pip from here. How to run? 🚀 Install 8_Puzzle

I3L4CK H4CK3l2 1 Jan 30, 2022
RRT algorithm and its optimization

RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT

Sarannya Bhattacharya 7 Mar 06, 2022
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
Exam Schedule Generator using Genetic Algorithm

Exam Schedule Generator using Genetic Algorithm Requirements Use any kind of crossover Choose any justifiable rate of mutation Use roulette wheel sele

Sana Khan 1 Jan 12, 2022
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 06, 2022