Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Overview

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral)

Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibel2

1York University   2Google Research

Paper | Poster | PPT | Video

C5_teaser

Reference code for the paper Cross-Camera Convolutional Color Constancy. Mahmoud Afifi, Jonathan T. Barron, Chloe LeGendre, Yun-Ta Tsai, and Francois Bleibel. In ICCV, 2021. If you use this code, please cite our paper:

@InProceedings{C5,
  title={Cross-Camera Convolutional Color Constancy},
  author={Afifi, Mahmoud and Barron, Jonathan T and LeGendre, Chloe and Tsai, Yun-Ta and Bleibel, Francois},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

C5_figure

Code

Prerequisite

  • Pytorch
  • opencv-python
  • tqdm

Training

To train C5, training/validation data should have the following formatting:

- train_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

In src/ops.py, the function add_camera_name(dataset_dir) can be used to rename image filenames and corresponding ground-truth JSON files. Each JSON file should include a key named either illuminant_color_raw or gt_ill that has the ground-truth illuminant color of the corresponding image.

The training code is given in train.py. The following parameters are required to set model configuration and training data information.

  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --learn-G: to use a G multiplier as explained in the paper.
  • --training-dir-in: training image directory.
  • --validation-dir-in: validation image directory; when this variable is None (default), the validation set will be taken from the training data based on the --validation-ratio.
  • --validation-ratio: when --validation-dir-in is None, this argument determines the validation set ratio of the image set in --training-dir-in directory.
  • --augmentation-dir: directory(s) of augmentation data (optional).
  • --model-name: name of the trained model.

The following parameters are useful to control training settings and hyperparameters:

  • --epochs: number of epochs
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • -optimizer: optimization algorithm for stochastic gradient descent; options are: Adam or SGD.
  • --learning-rate: Learning rate
  • --l2reg: L2 regularization factor
  • --load: to load C5 model from a .pth file; default is False
  • --model-location: when --load is True, this variable should point to the fullpath of the .pth model file.
  • --validation-frequency: validation frequency (in epochs).
  • --cross-validation: To use three-fold cross-validation. When this variable is True, --validation-dir-in and --validation-ratio will be ignored and 3-fold cross-validation, on the data provided in the --training-dir-in, will be applied.
  • --gpu: GPU device ID.
  • --smoothness-factor-*: smoothness loss factor of the following model components: F (conv filter), B (bias), G (multiplier layer). For example, --smoothness-factor-F can be used to set the smoothness loss for the conv filter.
  • --increasing-batch-size: for increasing batch size during training.
  • --grad-clip-value: gradient clipping value; if it's set to 0 (default), no clipping is applied.

Testing

To test a pre-trained C5 model, testing data should have the following formatting:

- test_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

The testing code is given in test.py. The following parameters are required to set model configuration and testing data information.

  • --model-name: name of the trained model.
  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --g-multiplier: to use a G multiplier as explained in the paper.
  • --testing-dir-in: testing image directory.
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • --multiple_test: to apply multiple tests (ten as mentioned in the paper) and save their results.
  • --white-balance: to save white-balanced testing images.
  • --cross-validation: to use three-fold cross-validation. When it is set to True, it is supposed to have three pre-trained models saved with a postfix of the fold number. The testing image filenames should be listed in .npy files located in the folds directory with the same name of the dataset, which should be the same as the folder name in --testing-dir-in.
  • --gpu: GPU device ID.

In the images directory, there are few examples captured by Mobile Sony IMX135 from the INTEL-TAU dataset. To white balance these raw images, as shown in the figure below, using a C5 model (trained on DSLR cameras from NUS and Gehler-Shi datasets), use the following command:

python test.py --testing-dir-in ./images --white-balance True --model-name C5_m_7_h_64

c5_examples

To test with the gain multiplie, use the following command:

python test.py --testing-dir-in ./images --white-balance True --g-multiplier True --model-name C5_m_7_h_64_w_G

Note that in testing, C5 does not require any metadata. The testing code only uses JSON files to load ground-truth illumination for comparisons with our estimated values.

Data augmentation

The raw-to-raw augmentation functions are provided in src/aug_ops.opy. Call the set_sampling_params function to set sampling parameters (e.g., excluding certain camera/dataset from the soruce set, determine the number of augmented images, etc.). Then, call the map_raw_images function to generate a new augmentation set with the determined parameters. The function map_raw_images takes four arguments:

  • xyz_img_dir: directory of XYZ images; you can download the CIE XYZ images from here. All images were transformed to the CIE XYZ space after applying the black-level normalization and masking out the calibration object (i.e., the color rendition chart or SpyderCUBE).
  • target_cameras: a list of one or more of the following camera models: Canon EOS 550D, Canon EOS 5D, Canon EOS-1DS, Canon EOS-1Ds Mark III, Fujifilm X-M1, Nikon D40, Nikon D5200, Olympus E-PL6, Panasonic DMC-GX1, Samsung NX2000, Sony SLT-A57, or All.
  • output_dir: output directory to save the augmented images and their metadata files.
  • params: sampling parameters set by the set_sampling_params function.
Owner
Mahmoud Afifi
Mahmoud Afifi
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022