Maha is a text processing library specially developed to deal with Arabic text.

Overview



CI Documentation Status codecov Discord Downloads License PyPI version Code style: black Checked with mypy PyPI - Python Version

An Arabic text processing library intended for use in NLP applications


Maha is a text processing library specially developed to deal with Arabic text. The beta version can be used to clean and parse text, files, and folders with or without streaming capability.

If you need help or want to discuss topics related to Maha, feel free to reach out to our Discord server. If you would like to submit a bug report or feature request, please open an issue.

Installation

Simply run the following to install Maha:

pip install mahad # pronounced maha d

For source installation, check the documentation.

Overview

Check out the overview section in the documentation to get started with Maha.

Documentation

Documentation are hosted at ReadTheDocs.

Contributing

Maha welcomes and encourages everyone to contribute. Contributions are always appreciated. Feel free to take a look at our contribution guidelines in the documentation.

License

Maha is BSD-licensed.

Comments
  • Time: Add the ability to parse Hijri dates

    Time: Add the ability to parse Hijri dates

    What does this pull request change?

    Closes #27.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 6
  • Added distance to dimension parsing

    Added distance to dimension parsing

    What does this pull request change?

    Resolves #15.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    parsing highlight 
    opened by TRoboto 5
  • Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    What does this pull request change?

    This PR introduces a new datasets module that offers an interface for all upcoming datasets. A new dataset, names, is released along with the module. It comprises 44,161 unique names with descriptions and name origin included for most names.

    Link to updated docs: https://maha--40.org.readthedocs.build/en/40/overview.html#datasets

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 4
  • Add pyupgrade to pre-commit and upgrade to future-style type annotations

    Add pyupgrade to pre-commit and upgrade to future-style type annotations

    What does this pull request change?

    Upgrades to new type annotations style.

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    maintenance 
    opened by TRoboto 3
  • Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    What does this pull request change?

    • Removes datasets module.
    • Datasets are now hosted here

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    breaking changes deprecation 
    opened by TRoboto 3
  • Add the ability to parse names from text

    Add the ability to parse names from text

    What does this pull request change?

    Adds #24. Depends on #40

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 3
  • Add a deprecation system

    Add a deprecation system

    What does this pull request change?

    • Closes #23
    • Adds 3 deprecation decorators; for functions, for parameters, for default parameters.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    development 
    opened by saedx1 3
  • Prepare for the next release of Maha (v0.3.0)

    Prepare for the next release of Maha (v0.3.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.3.0.
    • Bumped pypi version to v0.3.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Ordinal: Add support to `بعد` in ordinal parsing

    Ordinal: Add support to `بعد` in ordinal parsing

    What does this pull request change?

    Closes #48.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Numeral: Add support for hierarchical parsing

    Numeral: Add support for hierarchical parsing

    What does this pull request change?

    Closes #25

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Prepare for the next release of Maha (v0.2.0)

    Prepare for the next release of Maha (v0.2.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.2.0.
    • Bumped pypi version to v0.2.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Update ci.yml

    Update ci.yml

    Check the support for python 3,10

    What does this pull request change? It checks if the library is supporting python 3.10.

    • ...

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [ ] tox passes
    opened by PAIN-BARHAM 1
  • Add the option to ignore Harakat when removing or replacing

    Add the option to ignore Harakat when removing or replacing

    What problem are you trying to solve?

    Currently, the cleaner functions do not consider two strings similar if they have different Harakat/diacritics, which is the correct behavior. However, it would be great if the user had the option to ignore Harakat when comparing strings.

    Examples (if relevant)

    Current:

    >> from maha.cleaners.functions import remove
    >> output = remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة")
    >> output
    يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى
    

    Suggested:

    >> from maha.cleaners.functions import remove
    >> remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة", ignore_harakat=True)
    >> output
    يُدَرِّسُ العَرَبِيَّةَ الفُصْحَى
    

    Definition of Done

    • It must adhere to the coding style used in the defined cleaner functions.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by xaleel 1
  • Wrong parsed name using name dimension

    Wrong parsed name using name dimension

    What happened?

    The name parser extracted wrong name likes : بي, شكرا.

    Example: text: أريد البحث في سجل الإنفاق الخاص بي [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]

    I expect to extract the names on the name dataset only.

    Python version

    3.8

    What operating system are you using?

    Linux

    Code to reproduce the issue

    >>> from maha.parsers.functions import parse_dimension
    >>> text = `أريد البحث في سجل الإنفاق الخاص بي`
    >>> extracted = parse_dimension(text, names=True)
    [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]
    

    Relevant log output

    No response

    bug parsing 
    opened by PAIN-BARHAM 0
  • Add feature to parse duration period

    Add feature to parse duration period

    What problem are you trying to solve?

    Parsing the duration from the text that has the difference between the two dates.

    Examples (if relevant)

    >>> from maha.parsers.functions import parse_dimension
    >>> output = parse_dimension('عن ربع نمو سكان العالم القديم والتحضر بين 1700 و 1900 ميلادي', duration=True)[0].value
    >>> output
    DurationValue(values=[ValueUnit(value=200, unit=<DurationUnit.YEARS: 7>)], normalized_unit=<DurationUnit.SECONDS: 1>)
    
    

    Definition of Done

    • It must adhere to the coding style used in the defined dimensions, duration dimension.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by PAIN-BARHAM 1
  • Adding the parser functionality to Processors

    Adding the parser functionality to Processors

    What problem are you trying to solve?

    Adding the parser functionality to Processors to parse different dimensions.

    Examples (if relevant)

    >>> from pathlib import Path
    >>> import maha
    >>> resource_path = Path(maha.__file__).parents[1] / "sample_data/tweets.txt"
    >>> data = resource_path.read_text()
    >>> print(data)
    
    الساعة الآن 12:00 في اسبانيا 🇪🇸, انتهى بشكل رسمي عقد الأسطورة ليو ميسي مع برشلونة . .
    طبعا بكونو حاطين المكيف ع٣ مئوية وخود تقلبات وبرد وحر وCNS وزعيق المراقب وألف نيلة وقر فتحت اشوف درجة الحرارة هتبقي كام يو الامتحان لقيتها ٤٢ والامتحان الساعه ١ فعايز انورماليز اننا ننزل بالفالنه الحمالات Hot fac
    يسعدلي مساكم ❤🌹 شرح كلمة zwa هالمنشور رح تلاقو (zwar) سهل و لذيذ (aber) ناقصو شوية ملح وكزبر #منقو
    مـعلش استحملوني ب الاصفر هالفتره 💛 #ريشـه هههههههه
    لما حد يسالني بتختفي كتير لية =..
    زيِّنوا ليلة الجمع بالصلاة على النَّبِيِّ ﷺ" ❤
    #Windows11 is on the horizon. What feature are you looking forward to
    Get vaccinate #savethesaviour
    Today I am beginning project on 10 days duratio #30daysofcod #DEVCommunit
    
    >>> from maha.processors import FileProcessor
    >>> proc = FileProcessor(resource_path)
    >>> parsed = proc.parse_dimension(time=True)
    [Dimension(body=الساعة الآن 12:00, value=TimeValue(years=0, months=0, days=0, hours=0, minutes=0, seconds=0, hour=12, minute=0, second=0, microsecond=0), start=0, end=17, dimension_type=DimensionType.TIME),
     Dimension(body=الساعه ١, value=TimeValue(hour=1, minute=0, second=0, microsecond=0), start=238, end=246, dimension_type=DimensionType.TIME),
     Dimension(body=ليلة, value=TimeValue(am_pm='PM'), start=491, end=495, dimension_type=DimensionType.TIME)]
    
    

    Definition of Done

    • It must adhere to the coding style.
    • The implementation should cover most use cases.
    • Adding tests.
    good first issue feature request parsing 
    opened by PAIN-BARHAM 0
Releases(v0.3.0)
Owner
Mohammad Al-Fetyani
Machine Learning Engineer
Mohammad Al-Fetyani
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022