Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Overview

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020)

This repository contains the source code, pre-trained models, as well as instructions to reproduce results for our paper Time-aware Large Kernel Convolutions (ICML 2020).

TaLK Convolutions is a sequence modeling method that uses an adaptive convolution operation that learns to predict the size of a summation kernel instead of using a fixed-sized learnable kernel matrix. It utilizes a fast parallelized implementation of the summed-area table, also known as the integral image operation, to efficiently calculate the convolution output that uses the summation kernel. We generate relative offsets for each timestep of the input sequence, which are used to adaptively expand the size of the summation kernel conditioned on the input. This method yields a time complexity of O(n), effectively making the sequence encoding process linear to the number of tokens.

Video Presentation:

Time-aware Large Kernel Convolutions (ICML 2020)

Citation:

@inproceedings{lioutas2020timeaware,
    author={Vasileios Lioutas and Yuhong Guo},
    title={Time-aware Large Kernel Convolutions},
    booktitle={Proceedings of the 37th International Conference on Machine Learning (ICML)},
    year={2020}
}

Setup

Requirements

  • PyTorch version >= 1.3.1
  • fairseq version >= 0.10.1
  • Python version >= 3.6
  • CUDA >= 10.1
  • NVIDIA's apex library (for mixed-precision training)

Clone this repository

git clone https://github.com/lioutasb/TaLKConvolutions.git
cd TaLKConvolutions

Efficient CUDA Kernels

In order to support the parallelization of TaLK Convolutions, we have developed our own CUDA primitives. To install the kernels, use the commands below. We tested compiling the kernels using CUDA 10.1 but if a future CUDA release does not work, please feel free to open an issue.

cd talkconv/talkconv_module/
python setup.py install

We are welcoming contributions from experienced CUDA developers regarding making the CUDA kernels more efficient.

Translation

Pre-trained models

Dataset Model Prepared test set
IWSLT14 German-English download (.pt) IWSLT14 test: download (.zip)
WMT16 English-German download (.pt) newstest2014: download (.zip)
WMT14 English-French download (.pt) newstest2014: download (.zip)

Preprocessing the training datasets

Please follow the instructions https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md to preprocess the data.

IWSLT14 De-En

Training and evaluating TaLK Convolutions on a single GPU:

# Training
SAVE="checkpoints/talkconv_iwslt_deen"
mkdir -p $SAVE

CUDA_VISIBLE_DEVICES=0 \
fairseq-train data-bin/iwslt14.tokenized.de-en \
    --user-dir talkconv/talkconv_fairseq \
    --arch talkconv_iwslt_de_en \
    --optimizer adam  --fp16 --lr 0.0005 \
    --source-lang de --target-lang en --max-tokens 4000 \
    --min-lr '1e-09' --weight-decay 0.0001 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --lr-scheduler inverse_sqrt \
    --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1  \
    --max-update 85000 --warmup-updates 4000 --warmup-init-lr '1e-07' \
    --adam-betas '(0.9, 0.98)' --left-pad-source "False" --max-epoch 52 --seed 1024 \
    --save-dir $SAVE 

python utils/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation
fairseq-generate data-bin/iwslt14.tokenized.de-en --user-dir talkconv/talkconv_fairseq \
    --path "${SAVE}/model.pt" \
    --batch-size 128 --beam 5 --remove-bpe --lenpen 1.6 --gen-subset test --quiet 

WMT16 En-De

Training and evaluating TaLK Convolutions on WMT16 En-De using cosine scheduler on one machine with 8 NVIDIA GPUs:

# Training
SAVE="checkpoints/talkconv_wmt_ende_big"
mkdir -p $SAVE

python -m torch.distributed.launch --nproc_per_node 8 fairseq-train \
    data-bin/wmt16_en_de_bpe32k --fp16 --log-interval 100 --no-progress-bar --distributed-no-spawn \
    --user-dir talkconv/talkconv_fairseq \
    --max-update 30243 --share-all-embeddings --optimizer adam \
    --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --min-lr 1e-09 --update-freq 16 \
    --ddp-backend=no_c10d --max-tokens 3584 \
    --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
    --lr-shrink 1 --max-lr 0.001 --lr 1e-7 --min-lr 1e-9 --warmup-init-lr 1e-07 \
    --t-mult 1 --lr-period-updates 20000 \
    --arch talkconv_wmt_en_de_big \
    --save-dir $SAVE

# Checkpoint averaging
python utilss/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation on newstest2014
CUDA_VISIBLE_DEVICES=0 \
fairseq-generate data-bin/wmt16_en_de_bpe32k --user-dir talkconv/talkconv_fairseq \
  --path "${SAVE}/model.pt" \
  --batch-size 128 --beam 4 --remove-bpe --lenpen 0.35 --gen-subset test > wmt14_gen_ende.txt 

bash utils/compound_split_bleu.sh wmt14_gen_ende.txt 

WMT14 En-Fr

Training and evaluating TaLK Convolutions on WMT14 En-Fr using cosine scheduler on one machine with 8 NVIDIA GPUs:

# Training
SAVE="checkpoints/talkconv_wmt_enfr_big"
mkdir -p $SAVE
python -m torch.distributed.launch --nproc_per_node 8 fairseq-train \
    data-bin/wmt14_en_fr --fp16 --log-interval 100 --no-progress-bar --distributed-no-spawn \
    --user-dir talkconv/talkconv_fairseq \
    --max-update 80000 --share-all-embeddings --optimizer adam \
    --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --min-lr 1e-09 --update-freq 32 \
    --ddp-backend=no_c10d --max-tokens 1800 \
    --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
    --lr-shrink 1 --max-lr 0.001 --lr 1e-7 --min-lr 1e-9 --warmup-init-lr 1e-07 \
    --t-mult 1 --lr-period-updates 70000 \
    --arch talkconv_wmt_en_fr_big \
    --save-dir $SAVE

# Checkpoint averaging
python utils/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation
CUDA_VISIBLE_DEVICES=0 \
fairseq-generate data-bin/wmt14_en_fr --user-dir talkconv/talkconv_fairseq \
    --path "${SAVE}/model.pt" \
    --batch-size 128 --beam 6 --remove-bpe --lenpen 0.65 --gen-subset test --quiet 

License

This project is MIT-licensed. The license applies to the pre-trained models as well.

Owner
Vasileios Lioutas
PhD student at the University of British Columbia | M.Sc. in CS at Carleton University and ex-Machine Learning Researcher at Huawei Noah's Ark Lab
Vasileios Lioutas
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022