A Numba-based two-point correlation function calculator using a grid decomposition

Overview

numba-2pcf

tests

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Aside from the 2PCF calculation, the particle_grid module is both simple and fast and may be useful on its own as a way to partition particle sets in 3D.

Installation

$ git clone https://github.com/lgarrison/numba-2pcf.git
$ cd numba-2pcf
$ python -m pip install -e .

Example

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2.
pos = rng.random((N,3), dtype=np.float32)*box

res = numba_2pcf(pos, box, Rmax=0.05, nbin=10)
res.pprint_all()
        rmin                 rmax                 rmid                    xi            npairs 
-------------------- -------------------- -------------------- ----------------------- --------
                 0.0 0.005000000074505806 0.002500000037252903   -0.004519257448573177    65154
0.005000000074505806 0.010000000149011612  0.00750000011175871   0.0020113763064291135   459070
0.010000000149011612  0.01500000022351742 0.012500000186264515    0.000984359247434119  1244770
 0.01500000022351742 0.020000000298023225 0.017500000260770324  -6.616896085054336e-06  2421626
0.020000000298023225  0.02500000037252903 0.022500000335276125  0.00019365366488166558  3993210
 0.02500000037252903  0.03000000044703484 0.027500000409781934   5.769329601057471e-05  5956274
 0.03000000044703484  0.03500000052154064 0.032500000484287736   0.0006815801672250821  8317788
 0.03500000052154064  0.04000000059604645 0.037500000558793545    2.04711840243732e-05 11061240
 0.04000000059604645  0.04500000067055226 0.042500000633299354   9.313641918828885e-05 14203926
 0.04500000067055226  0.05000000074505806  0.04750000070780516 -0.00011690771042793813 17734818

Performance

The goal of this project is not to provide the absolute best performance that given hardware can produce, but it is a goal to provide as good performance as Numba will let us reach (while keeping the code readable). So we pay special attention to things like dtype (use float32 particle inputs when possible!), parallelization, and some early-exit conditions (when we know a pair can't fall in any bin).

As a demonstration that this code provides passably good performance, here's a dummy test of 107 unclustered data points in a 2 Gpc/h box (so number density 1.2e-3), with Rmax=200 Mpc/h and bin width of 1 Mpc/h:

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2000
pos = rng.random((N,3), dtype=np.float32)*box

%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=False, nthread=24)  # 3.5 s
%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=True, nthread=24)  # 1.3 s

So within a factor of 3 of Corrfunc, and we aren't even exploiting the symmetry of the autocorrelation (i.e. we count every pair twice). Not bad!

Testing Against Corrfunc

The code is tested against Corrfunc. And actually, the numba_2pcf() function takes a flag corrfunc=True that calls Corrfunc instead of the Numba implementation to make such testing even easier.

Details

numba_2pcf works a lot like Corrfunc, or any other grid-based 2PCF code: the 3D volume is divided into a grid of cells at least Rmax in size, where Rmax is the maximum radius of the correlation function measurement. Then, we know all valid particle pairs must be in neighboring cells. So the task is simply to loop through each cell in the grid, pairing it with each of its 26 neighbors (plus itself). We parallelize over cell pairs, and add up all the pair counts across threads at the end.

This grid decomposition prunes distant pairwise comparisons, so even though the runtime still formally scales as O(N2), it makes the 2PCF tractable for many realistic problems in cosmology and large-scale structure.

A numba implementation isn't likely to beat Corrfunc on speed, but numba can still be fast enough to be useful (especially when the computation parallelizes well). The idea is that this code provides a "fast enough" parallel implementation while still being highly readable --- the 2PCF implementation is about 150 lines of code, and the gridding scheme 100 lines.

Branches

The particle-jackknife branch contains an implementation of an idea for computing the xi(r) variance based on the variance of the per-particle xi(r) measurements. It doesn't seem to be measuring the right thing, but the code is left for posterity.

Acknowledgments

This repo was generated from @DFM's Cookiecutter Template. Thanks, DFM!

Owner
Lehman Garrison
Flatiron Research Fellow at the Center for Computational Astrophysics
Lehman Garrison
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como código Utuilizando um cluster Kubernetes na Azure Ingestão

Otacilio Filho 4 Jan 23, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

opendrift OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere. Do

OpenDrift 167 Dec 13, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022