Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Overview

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI

Objetivos

  • Criar infraestrutura como código
  • Utuilizando um cluster Kubernetes na Azure
    • Ingestão dos dados do Enade 2017 com python para o datalake na Azure
    • Transformar os dados da camada bronze para camada silver usando delta format
    • Enrriquecer os dados da camada silver para camada gold usando delta format
  • Utilizar Azure Synapse Serveless SQL Poll para servir os dados

Arquitetura

arquitetura

Passos

Criar infra

source infra/00-variables

bash infra/01-create-rg.sh

bash infra/02-create-cluster-k8s.sh

bash infra/03-create-lake.sh

bash infra/04-create-synapse.sh

bash infra/05-access-assignments.sh

Preparar k8s

Baixar kubeconfig file

bash infra/02-get-kubeconfig.sh

Para facilitar os comandos usar um alias

alias k=kubectl

Criar namespace

k create namespace processing
k create namespace ingestion

Criar Service Account e Role Bing

k apply -f k8s/crb-spark.yaml

Criar secrets

k create secret generic azure-service-account --from-env-file=.env --namespace processing
k create secret generic azure-service-account --from-env-file=.env --namespace ingestion

Intalar Spark Operator

helm repo add spark-operator https://googlecloudplatform.github.io/spark-on-k8s-operator

helm repo update

helm install spark spark-operator/spark-operator --set image.tag=v1beta2-1.2.3-3.1.1 --namespace processing

Ingestion app

Ingestion Image

docker build ingestion -f ingestion/Dockerfile -t otaciliopsf/cde-bootcamp:desafio-mod4-ingestion --network=host

docker push otaciliopsf/cde-bootcamp:desafio-mod4-ingestion

Apply ingestion job

k8s/ingestion-job.yaml k apply -f k8s/ingestion-job.yaml ">
# primeiro mudar o nome unico do pod
cat k8s/ingestion-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);y['metadata']['name']=y['metadata']['name'][:-8]+str(uuid.uuid4())[:8];print(yaml.dump(y))"\
> k8s/ingestion-job.yaml

k apply -f k8s/ingestion-job.yaml

Logs

ING_POD_NAME=$(cat k8s/ingestion-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);print(y['metadata']['name'])")

k logs $ING_POD_NAME -n ingestion --follow

Spark

Criar Job Image

docker build spark -f spark/Dockerfile -t otaciliopsf/cde-bootcamp:desafio-mod4

docker push otaciliopsf/cde-bootcamp:desafio-mod4

Apply job

k8s/spark-job.yaml k apply -f k8s/spark-job.yaml ">
# primeiro muda o nome unico da Spark Application
cat k8s/spark-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);y['metadata']['name']=y['metadata']['name'][:-8]+str(uuid.uuid4())[:8];print(yaml.dump(y))"\
> k8s/spark-job.yaml

k apply -f k8s/spark-job.yaml

logs

SPARK_APP_NAME=$(cat k8s/spark-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);print(y['metadata']['name'])")'-driver'

k logs $SPARK_APP_NAME -n processing --follow

Azure Synapse Serveless SQL Poll

Acessar o Synapse workspace através do link gerado

bash infra/04-get-workspace-url.sh

Para começar a usar siga os passos

steps-synapse

Rodar o conteudo do script create-synapse-view.sql no Synapse workspace para criar a view da tabela no lake

Pronto, o Synapse esta pronto para receber as querys.

Limpando os recursos

bash infra/99-delete-service-principal.sh

bash infra/99-delete-rg.sh

Conclusão

Seguindo os passos citados é possivel realizar querys direto na camada gold do delta lake utilizando o Synapse

Owner
Otacilio Filho
Data Engineer Azure | Python | Spark | Databricks
Otacilio Filho
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022