Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Overview

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

This is an accompanying repository to the ICAIL 2021 paper entitled "Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains". All the data and the code used in the experiments reported in the paper are to be found here.

Data

The data set consists of 807 adjudicatory decisions from 7 different countries (6 languages) annotated in terms of the following type system:

  • Out of Scope - Parts outside of the main document body (e.g., metadata, editorial content, dissents, end notes, appendices).
  • Heading - Typically an incomplete sentence or marker starting a section (e.g., “Discussion,” “Analysis,” “II.”).
  • Background - The part where the court describes procedural history, relevant facts, or the parties’ claims.
  • Analysis - The section containing reasoning of the court, issues, and application of law to the facts of the case.
  • Introductory Summary - A brief summary of the case at the beginning of the decision.
  • Outcome - A few sentences stating how the case was decided (i.e, the overall outcome of the case).

The country specific subsets:

  • Canada - Random selection of cases retrieved from www.canlii.org from multiple provinces. The selection is not limited to any specific topic or court.
  • Czech Republic - A random selection of cases from Constitutional Court (30), Supreme Court (40), and Supreme Administrative Court (30). Temporal distribution was taken into account.
  • France - A selection of cases decided by Cour de cassation between 2011 and 2019. A stratified sampling based on the year of publication of the decision was used to select the cases.
  • Germany - A stratified sample from the federal jurisprudence database spanning all federal courts (civil, criminal, labor, finance, patent, social, constitutional, and administrative).
  • Italy - The top 100 cases of the criminal courts stored between 2015 and 2020 mentioning “stalking” and keyed to the Article 612 bis of the Criminal Code.
  • Poland - A stratified sample from trial-level, appellate, administrative courts, the Supreme Court, and the Constitutional tribunal. The cases mention “democratic country ruled by law.”
  • U.S.A. I - Federal district court decisions in employment law mentioning “motion for summary judgment,” “employee,” and “independent contractor.”
  • U.S.A. II - Administrative decisions from the U.S. Department of Labor. Top 100 ordered in reverse chronological rulings order, starting in October 2020, were selected.

For more detailed information, please, refer to the original paper.

How to Use

ICAIL 2021 Data

The data used in the ICAIL 2021 experiments can be found in the following paths:

data/Country-Language-*/annotator-*-ICAIL2021.csv

Note that the Canadian subset could not be included in this repository due to concerns about personal information protection in Canada. However, it can be obtained upon request at [email protected]. Once you obtain the data, you just need to create data/Canada-EN-1 directory and place all the files there.

If you would like to experiment with different preprocessing techniques the original texts are placed in the following paths:

data/Country-Language-*/texts

You can find the annotations corresponding to these texts here:

data/Country-Language-*/annotator-*.csv

The texts cleaned of the Out of Scope and Heading segments (via dataset_clean.py) are placed in the following paths:

data/Country-Language-*/texts-clean-annotator-*

Note that the processing depends on annotations. Hence, there are several versions of documents at this stage if there were multiple annotators. The annotations corresponding to the cleaned texts are here:

data/Country-Language-*/annotator-*-clean.csv

The dataset_ICAIL2021.py has the processing code that has been applied to the cleaned texts and annotations to generate the ICAIL 2021 dataset (see above). Note, that the code will skip the Czech Republic subset by default. This is because this subset requires an external resource for sentence segmentation (czech-pdt-ud-X.X-XXXXXX.udpipe). You first need to obtain the file at https://universaldependencies.org/. Then, you need to place it into the data directory. Then, you can remove the Czech_Republic-CZ-1 string from the EXCLUDED tuple in dataset_ICAIL2021.py. Finally, you need to replace the data/czech-pdt-ud-2.5-191206.udpipe string in the utils.py to correspond to the file that you have downloaded. After these changes, the code will also operate on the Czech Republic part of the dataset.

Dataset Statistics

To replicate the inter-annotator agreement analysis performed in the ICAIL 2021 paper you can use the ia_agreement.ipynb notebook.

To generate the dataset statistics reported in the ICAIL 2021 paper you can use the dataset_statistics.ipynb notebook.

Experiments

The file ICAIL2021_experiments.ipynb contains the code necessary to run the code presented in the paper. This includes the code to embed the sentences of the cases into a multilingual vector representation, the definition of the Gated Recurrent Unit model and the code to train and evaluated along the different experiments described in the paper. It also contains the code to create the visualizations presented in the discussion section of the paper.

The notebook can be run in two different ways:

Attribution

We kindly ask you to cite the following paper:

@inproceedings{savelka2021,
    title={Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains},
    author={Jaromir Savelka and Hannes Westermann and Karim Benyekhlef and Charlotte S. Alexander and Jayla C. Grant and David Restrepo Amariles and Rajaa El Hamdani and S\'{e}bastien Mee\`{u}s and Aurore Troussel and Micha\l\ Araszkiewicz and Kevin D. Ashley and Alexandra Ashley and Karl Branting and Mattia Falduti and Matthias Grabmair and Jakub Hara\v{s}ta and Tereza Novotn\'a, Elizabeth Tippett and Shiwanni Johnson},
    year={2021},
    booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
    publisher={Association for Computing Machinery},
    doi={10.1145/3462757.3466149}
}

Jaromir Savelka, Hannes Westermann, Karim Benyekhlef, Charlotte S. Alexander, Jayla C. Grant, David Restrepo Amariles, Rajaa El Hamdani, Sébastien Meeùs, Aurore Troussel, Michał Araszkiewicz, Kevin D. Ashley, Alexandra Ashley, Karl Branting, Mattia Falduti, Matthias Grabmair, Jakub Harašta, Tereza Novotná, Elizabeth Tippett, and Shiwanni Johnson. 2021. Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains. In Eighteenth International Conference for Artificial Intelligence and Law (ICAIL’21), June 21–25, 2021, São Paulo, Brazil. ACM, New York,NY, USA, 10 pages. https://doi.org/10.1145/3462757.3466149

Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022