Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Overview

Spark Python Notebooks

Join the chat at https://gitter.im/jadianes/spark-py-notebooks

This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, from basic to advanced, by using the Python language.

If Python is not your language, and it is R, you may want to have a look at our R on Apache Spark (SparkR) notebooks instead. Additionally, if your are interested in being introduced to some basic Data Science Engineering, you might find these series of tutorials interesting. There we explain different concepts and applications using Python and R.

Instructions

A good way of using these notebooks is by first cloning the repo, and then starting your own IPython notebook/Jupyter in pySpark mode. For example, if we have a standalone Spark installation running in our localhost with a maximum of 6Gb per node assigned to IPython:

MASTER="spark://127.0.0.1:7077" SPARK_EXECUTOR_MEMORY="6G" IPYTHON_OPTS="notebook --pylab inline" ~/spark-1.5.0-bin-hadoop2.6/bin/pyspark

Notice that the path to the pyspark command will depend on your specific installation. So as requirement, you need to have Spark installed in the same machine you are going to start the IPython notebook server.

For more Spark options see here. In general it works the rule of passing options described in the form spark.executor.memory as SPARK_EXECUTOR_MEMORY when calling IPython/pySpark.

Datasets

We will be using datasets from the KDD Cup 1999. The results of this competition can be found here.

References

The reference book for these and other Spark related topics is:

  • Learning Spark by Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.

Notebooks

The following notebooks can be examined individually, although there is a more or less linear 'story' when followed in sequence. By using the same dataset they try to solve a related set of tasks with it.

RDD creation

About reading files and parallelize.

RDDs basics

A look at map, filter, and collect.

Sampling RDDs

RDD sampling methods explained.

RDD set operations

Brief introduction to some of the RDD pseudo-set operations.

Data aggregations on RDDs

RDD actions reduce, fold, and aggregate.

Working with key/value pair RDDs

How to deal with key/value pairs in order to aggregate and explore data.

MLlib: Basic Statistics and Exploratory Data Analysis

A notebook introducing Local Vector types, basic statistics in MLlib for Exploratory Data Analysis and model selection.

MLlib: Logistic Regression

Labeled points and Logistic Regression classification of network attacks in MLlib. Application of model selection techniques using correlation matrix and Hypothesis Testing.

MLlib: Decision Trees

Use of tree-based methods and how they help explaining models and feature selection.

Spark SQL: structured processing for Data Analysis

In this notebook a schema is inferred for our network interactions dataset. Based on that, we use Spark's SQL DataFrame abstraction to perform a more structured exploratory data analysis.

Applications

Beyond the basics. Close to real-world applications using Spark and other technologies.

Olssen: On-line Spectral Search ENgine for proteomics

Same tech stack this time with an AngularJS client app.

An on-line movie recommendation web service

This tutorial can be used independently to build a movie recommender model based on the MovieLens dataset. Most of the code in the first part, about how to use ALS with the public MovieLens dataset, comes from my solution to one of the exercises proposed in the CS100.1x Introduction to Big Data with Apache Spark by Anthony D. Joseph on edX, that is also publicly available since 2014 at Spark Summit.

There I've added with minor modifications to use a larger dataset and also code about how to store and reload the model for later use. On top of that we build a Flask web service so the recommender can be use to provide movie recommendations on-line.

KDD Cup 1999

My try using Spark with this classic dataset and Knowledge Discovery competition.

Contributing

Contributions are welcome! For bug reports or requests please submit an issue.

Contact

Feel free to contact me to discuss any issues, questions, or comments.

License

This repository contains a variety of content; some developed by Jose A. Dianes, and some from third-parties. The third-party content is distributed under the license provided by those parties.

The content developed by Jose A. Dianes is distributed under the following license:

Copyright 2016 Jose A Dianes

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Jose A Dianes
Principal Data Scientist at Mosaic Therapeutics.
Jose A Dianes
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022