We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Overview

Logo We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Arson Map

Inspiration

There’s been a lot of wildfires in California in recent years, and a lot of the most recent wildfires have been uncontained. The government does not have the capacity to deal with such a huge amount of wildfires so it has to pick and choose which fires to bring under control. This picking and choosing should be done based on wildfire and wind data in order to minimize the damage caused by wildfires We should also prioritize mitigating fires that can spread across many counties/ have a large chance of spreading further

What it does

Our project consists of a web app with an interactive map. We represent our wildfire as a MDP and determine how at risk counties are based on the fire location(s).

How we built it

We split the project into 2 main parts: web app and AI

Website

Artificial Intelligence

  • Represent the wildfire as a MDP (Markov Decision Process)
    • States: Counties
    • Actions: Traversing Counties
    • Probability distribution: generated from wind data
    • Transition Model: generated from wind data
    • Reward function: Uniform for every county burned (prone to change if scaled up)
  • Use bellman equation to iterate through counties and propagate the fire
    • Utility values ranging between 0 and 1 represent how at risk a county is
    • Screenshot
    • Run until utility values reach equilibrium or until 100 iterations are run
    • Gamma = 0.8
  • Represent the map as a graph
    • Counties are nodes
    • Wind speeds are edges
    • Assign each county with a risk (for reward function)
    • Spawn fires on specific counties

Challenges we ran into

Our project has a pretty large scope. We needed to develop a model and integrate it with a web app. This required extensive knowledge on AWS utilities and crisp communication between team members. The machine learning portion of this hackathon was difficult as we had to decide on what type of model to use for the wildfire and how to assign reward and utility values.

Accomplishments that we're proud of

We were able to integrate the web app with the model really quickly. This was surprising since usually connecting the pieces together will have a lot of bugs. It was also Austin, Raaj, and Romuz's first hackathons and this was a fairly complex project compared to a standard web app.

What we learned

This hackathon was a first for many of us. This was the first time any of us had implemented a machine learning model and connected it to a web app.

This was my first time at a hackathon and I couldn't have asked for better teammates than Jerry, Raaj, and Romuz. I learned so much over the last two days about machine learning, data science, React, and working as a team to help tackle some of California's greatest challenges. - Austin Rivard

As a first-year student, I have learned a lot of new skill sets while working with this team. I was happy to be a member of such an agile team. I learned numerous of new concepts, such as working with AWS, writing algorithms, and the graph data structures. - Romuz Abdulhamidov

What's next for Arson

  • Scale up to entire California to generate a better map during wildfire season
  • Generate more accurate Reward values for each county burned
  • Incorporate type 2 rewards based on R(state, action)
    • Wildfire gets bigger as it burns more land
    • Wildfire gets smaller in the presence of firefighters
  • Automatically train and deploy models by integrating real-time data for wind and wildfires

Demo

Screenshot

Owner
Jerry Lee
software engineer
Jerry Lee
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023