Automatic learning-rate scheduler

Overview

AutoLRS

This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published at ICLR 2021.

A TensorFlow version will appear in this repo later.

What is AutoLRS?

Finding a good learning rate schedule for a DNN model is non-trivial. The goal of AutoLRS is to automatically tune the learning rate (LR) over the course of training without human involvement. AutoLRS chops up the whole training process into a few training stages (each consists of τ steps), and its mission is to determine a constant LR for each training stage. AutoLRS treats the validation loss as a black-box function of LR, and uses Bayesian optimization (BO) to search for the best LR which can minimize the validation loss for each training stage. Because BO would require τ steps of training to evaluate the validation loss for each LR it explores, to reduce this cost, we only apply an LR to train the DNN for τ’ (τ’ << τ) steps and train an exponential time-series forecasting model to predict the loss after τ steps. In our default setting, τ’ = τ/10 and BO explores 10 LRs in each stage, so the number of steps for searching LR is equal to the number of steps for actual training.

AutoLRS does not depend on a pre-defined LR schedule, dataset, or a specified task and is compatible with almost all optimizers. The LR schedules auto-generated by AutoLRS lead to speedup over highly hand-tuned LR schedules for several state-of-the-art DNNs including ResNet-50, Transformer, and BERT.

Setup

$ pip install --user -r requirements.txt

How to use AutoLRS for your work?

autolrs_server.py is the brain of AutoLRS, which implements the search algorithm including BO and the exponential forecasting model.

autolrs_callback.py implements a callback which you can plug into your Pytorch training loop. The callback receives commands from the server via socket, adjusting the learning rate, saving/restoring model parameters and optimizer states according to commands sent from the server.

Notes

  • You need to pass two arguments min_lr and max_lr when launching autolrs_server.py to set the LR search interval. This interval can be found by an LR range test or simply set according to your experience. Do not set the min_lr too small (for example 1e-10), otherwise, BO will waste a lot of cycles to try exploring very small LR values.
  • The current AutoLRS does not search LR for warmup steps since warmup does not have an explicit optimization objective, such as minimizing the validation loss. Warmup usually takes very few steps, and its main purpose is to prevent deeper layers in a DNN from creating training instability, especially when training using a large batch size. You can manually add a warmup stage by setting warmup_step and warmup_lr when initializing the autolrs_callback.AutoLRS callback.

Example

We provide an example of using AutoLRS to train various DNNs on the CIFAR-10 dataset. The models are imported from kuangliu's great and simple pytorch-cifar repository.

Prerequisites: Python 3.6+, PyTorch 1.0+

Run the example

$ bash run.sh

Contact

You can contact us at [email protected]. We would love to hear your questions and feedback!

Poster

Owner
Yuchen Jin
Yuchen Jin
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022