Joint Gaussian Graphical Model Estimation: A Survey

Overview

Joint Gaussian Graphical Model Estimation: A Survey

Test Models

  1. Fused graphical lasso [1]
  2. Group graphical lasso [1]
  3. Graphical lasso [1]
  4. Doubly joint spike-and-slab graphical lasso [2]

Installation

  1. Anaconda Environment package:
conda env create -f environment.yml
conda activate r_env2  #activate environment
  1. Install R packages
Rscript install_packages.R

Run Examples

Jupyter notebook

Saveral examples of data generation processes as well as sample codes are in the folder ./examples/jupyter_notebook

Plot ROC curve

Sample code for data generation process 1 (DGP1). The instruction for running DGP2_roc.r is the same.

cd examples/roc
### Generate simulated data, the result will be stored in ./data 
Rscript DGP1_roc.r DG [DATA DIMENSION]

### Select one of the refularization method FGL/GGL/GL. The result will be stored in ./results
Rscript DGP1_roc.r [ACTION: FGL/DGL/GL] [DATA DIMENSION]

###visualization
Rscript DGP1_roc_visualization.r
Other examples

Please check the structure tree below for more details.

Structure

├── examples
│   ├── jupyter_notebook
|   |   ├── simple_example_block.ipynb
|   |   ├── simple_example_scalefree.ipynb
|   |   ├── simple_example_ssjgl.ipynb
│   │   └── simple_example.ipynb
│   │
│   ├── roc # run & visualize ROC curve
|   |   ├── DGP1_roc_visualization.r #visualization|   ├── DGP1_roc.r # roc curve on scalefree network, common structures share same inverse convarince matrix (data generation process 1)
|   |   |                
|   |   ├── DGP2_roc_visualization.r #visualization
|   |   ├── DGP2_roc.r # roc curve on scalefree network, common structures have different inverse convarince matrices (data generation process 2)
|   |   |                    
|   |   ├── simple_roc_vis.r # visualization
|   |   └── simple_roc.r # roc curve on ramdom network
|   | 
|   ├── joint_demo.r # beautiful result on random network (Erdos-Renyi graph)            
│   ├── loss_graphsize_npAIC.r #fix p, vary n            
│   ├── loss_smallgraphsize.r #fix n, vary n             
│   ├── oos_scalefree.r # out-of-sample likelihood on scalefree network.              
│   ├── oos.r # out-of-sample likelihood on random network      
|   ├── scalefree_AIC.r # model selection on scalefree network using AIC, tune the trucation value                
|   ├── scalefree_BIC.r # model selection on scalefree network using BIC, tune the trucation value               
|   ├── simple_example_ar.r # example on AR network: model selction, fnr,fpr, Frobenious loss, etropy loss                      
|   └── simple_example_scalefree.r # example on scalefree network: model selction, fnr,fpr, Frobenious loss, etropy loss
|                          
├── R #source file
|   ├── admm.iters.R
|   ├── display.R
|   ├── eval.R
|   ├── gen_data.R
|   ├── gete.R
|   ├── JGL.R
|   ├── metrics.R
|   └── SSJGL.R
|   
├── environment.yml
├── install_packages.R
├── README.md
└── .gitignore

References

[1] Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B, Statistical methodology, 76(2), 373.

[2] Zehang Richard Li, Tyler H. McCormick, and Samuel J. Clark. "Bayesian joint spike-and-slab graphical lasso". International Conference on Machine Learning, 2019.

Owner
Koyejo Lab
Koyejo Lab @ UIUC
Koyejo Lab
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021