Conduits - A Declarative Pipelining Tool For Pandas

Related tags

Data Analysisconduits
Overview

Conduits - A Declarative Pipelining Tool For Pandas

Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can sometimes requires that you adhere to strong contracts in order to use them (looking at you Scikit Learn pipelines ��). It is also usually done completely differently to the way the pipelines where developed during the ideation phase, requiring significate rewrite to get them to work in the new paradigm.

Modelled off the declarative pipeline of Flask, Conduits aims to give you a nicer, simpler, and more flexible way of declaring your data processing pipelines.

Installation

pip install conduits

Quickstart

False! assert output.X.sum() == 17 # Square before addition => True! ">
import pandas as pd
from conduits import Pipeline

##########################
## Pipeline Declaration ##
##########################

pipeline = Pipeline()


@pipeline.step(dependencies=["first_step"])
def second_step(data):
    return data + 1


@pipeline.step()
def first_step(data):
    return data ** 2


###############
## Execution ##
###############

df = pd.DataFrame({"X": [1, 2, 3], "Y": [10, 20, 30]})

output = pipeline.fit_transform(df)
assert output.X.sum() != 29  # Addition before square => False!
assert output.X.sum() == 17  # Square before addition => True!

Usage Guide

Declarations

Your pipeline is defined using a standard decorator syntax. You can wrap your pipeline steps using the decorator:

@pipeline.step()
def transformer(df):
    return df + 1

The decoratored function should accept a pandas dataframe or pandas series and return a pandas dataframe or pandas series. Arbitrary inputs and outputs are currently unsupported.

If your transformer is stateful, you can optionally supply the function with fit and transform boolean arguments. They will be set as True when the appropriate method is called.

@pipeline.step()
def stateful(data: pd.DataFrame, fit: bool, transform: bool):
    if fit:
        scaler = StandardScaler()
        scaler.fit(data)
        joblib.dump(scaler, "scaler.joblib")
        return data
    
    if transform:
        scaler = joblib.load(scaler, "scaler.joblib")
        return scaler.transform(data)

You should not serialise the pipeline object itself. The pipeline is simply a declaration and shouldn't maintain any state. You should manage your pipeline DAG definition versions using a tool like Git. You will receive an error if you try to serialise the pipeline.

If there are any dependencies between your pipeline steps, you may specify these in your decorator and they will be run prior to this step being run in the pipeline. If a step has no dependencies specified it will be assumed that it can be run at any point.

@pipeline.step(dependencies=["add_feature_X", "add_feature_Y"])
def combine_X_with_Y(df):
    return df.X + df.Y

API

Conduits attempts to mock the Scikit Learn API as best as possible. Your defined piplines have the standard methods of:

pipeline.fit(df)
out = pipeline.transform(df)
out = pipeline.fit_transform(df)

Note that for the current release you can only supply pandas dataframes or series objects. It will not accept numpy arrays.

Tests

In order to run the testing suite you should install the dev.requirements.txt file. It comes with all the core dependencies used in testing and packaging. Once you have your dependencies installed, you can run the tests via the target:

make tests

The tests rely on pytest-regressions to test some functionality. If you make a change you can refresh the regression targets with:

make regressions
Owner
Kale Miller
Founder @ Prometheus AI
Kale Miller
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022