Model parallel transformers in JAX and Haiku

Overview

Table of contents

  1. Mesh Transformer JAX
    1. Updates
  2. Pretrained Models
    1. GPT-J-6B
      1. Links
      2. Acknowledgments
      3. License
      4. Model Details
      5. Zero-Shot Evaluations
  3. Architecture and Usage
    1. Fine-tuning
    2. JAX Dependency
  4. TODO

Mesh Transformer JAX

A haiku library using the xmap/pjit operators in JAX for model parallelism of transformers.

The parallelism scheme is similar to the original Megatron-LM, which is efficient on TPUs due to the high speed 2d mesh network. There is also an experimental model version which implements ZeRo style sharding.

This library is designed for scalability up to approximately 40B parameters on TPUv3s, beyond which different parallelism strategies should be used. See other implementations such as GPT-NeoX or DeepSpeed for that.

One future direction for research is integrating this codebase with swarm-jax, to achieve further scalability with pipeline parallelism.

Updates

12-07-21: Added guide to fine tuning

Pretrained Models

GPT-J-6B

A 6 billion parameter, autoregressive text generation model trained on The Pile.

Links

Slim weights (bf16 weights only, for inference, 9GB)

Full weights (including optimizer params, 61GB)

Colab demo

Web demo

Aran's blog post

Acknowledgments

This project would not have been possible without compute generously provided by the TPU Research Cloud with assistance from EleutherAI.

Thanks to the Cloud TPU team at Google for providing early access to the Cloud TPU VM alpha (now publicly available!)

Thanks to everyone who have helped out one way or another (listed alphabetically):

  • Aran Komatsuzaki for advice with experiment design and writing the blog posts.
  • James Bradbury for valuable assistance with debugging JAX issues.
  • Janko Prester for creating the web demo frontend.
  • Laurence Golding for adding some features to the web demo.
  • Leo Gao for running zero shot evaluations for the baseline models for the table.

License

The weights of GPT-J-6B are licensed under version 2.0 of the Apache License.

Model Details

Hyperparameter Value
n_parameters 6,053,381,344
n_layers 28*
d_model 4,096
d_ff 16,384
n_heads 16
d_head 256
n_ctx 2,048
n_vocab 50,257 (same tokenizer as GPT-2/3)
position encoding Rotary position encodings (RoPE)
RoPE dimensions 64

* each layer consists of one feedforward block and one self attention block

The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3.

Zero-Shot Evaluations

Models roughly sorted by performance, or by FLOPs if not available.

Model Weights Training FLOPs LAMBADA PPL ↓ LAMBADA Acc ↑ Winogrande ↑ Hellaswag ↑ PIQA ↑ Dataset Size (GB)
Chance 0 ~a lot ~0% 50% 25% 25% 0
GPT-3-Ada‡ ----- 9.95 51.6% 52.9% 43.4% 70.5% -----
GPT-2-1.5B ----- 10.63 51.21% 59.4% 50.9% 70.8% 40
GPTNeo-1.3B‡ 3.0e21 7.50 57.2% 55.0% 48.9% 71.1% 825
Megatron-2.5B* 2.4e21 ----- 61.7% ----- ----- ----- 174
GPTNeo-2.7B‡ 6.8e21 5.63 62.2% 56.5% 55.8% 73.0% 825
GPT-3-1.3B*‡ 2.4e21 5.44 63.6% 58.7% 54.7% 75.1% ~800
GPT-3-Babbage‡ ----- 5.58 62.4% 59.0% 54.5% 75.5% -----
Megatron-8.3B* 7.8e21 ----- 66.5% ----- ----- ----- 174
GPT-3-2.7B*‡ 4.8e21 4.60 67.1% 62.3% 62.8% 75.6% ~800
Megatron-11B† 1.0e22 ----- ----- ----- ----- ----- 161
GPT-J-6B 1.5e22 3.99 69.7% 65.3% 66.1% 76.5% 825
GPT-3-6.7B*‡ 1.2e22 4.00 70.3% 64.5% 67.4% 78.0% ~800
GPT-3-Curie‡ ----- 4.00 69.3% 65.6% 68.5% 77.9% -----
GPT-3-13B*‡ 2.3e22 3.56 72.5% 67.9% 70.9% 78.5% ~800
GPT-3-175B*‡ 3.1e23 3.00 76.2% 70.2% 78.9% 81.0% ~800
GPT-3-Davinci‡ ----- 3.0 75% 72% 78% 80% -----
Gopher 230B* 6.31E+23 ----- 74.50% 70.10% 79.20% 81.80% 1344
MT-NLG 530B*‡ ----- ----- 76.6% 73.0% 80.2% 82.0% -----

* represents evaluation numbers reported by their respective authors, all other numbers are provided by running the lm-evaluation-harness either with the released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See this blog post for more details.

The Megatron-11B model provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see 1 2 3) Thus, evaluation was not attempted.

These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on The Pile, which has not been deduplicated against any test sets.

Architecture and Usage

Most scripts in this repository are designed to be run on TPUs, which under the TPU-VM architecture are virtual machines which can run arbitrary code. Most scripts are designed to spin up a TPU, SSH into it to set up the dependencies and copy code over from the local directory, and then start a Ray worker which can accept RPC calls.

The TPUVMs handles running model training steps and evaluation, checkpoint save and loading, while the driver python program handles data loading and general orchestration (such as when to save checkpoints etc).

This means that most scripts (train.py, eval_harness.py etc) expect to be running on a GCE virtual machine in the same region as the TPUs, to minimize RPC latency and data transfer cost. Other scripts (usually ones which don't take a --tpu argument, such as device_sample.py, device_serve.py or device_train.py) expect to be run directly on a TPUVM. The device_* scripts only work on a v3-8 and not on larger pods.

Furthermore, there is an example (resharding_example.py) of how to convert the provided checkpoints (which have 8 shards in the case of GPT-J-6B) down to a smaller number, such as for when running on GPU(s).

Fine-tuning

To fine-tune the model, run device_train.py on a TPU VM. Using a TPU v3-8, you can fine-tune at a rate of ~5000 tokens/second, which should be sufficient for small-to-medium-size datasets.

Please read the step by step guide for thorough fine-tuning instructions.

JAX Dependency

Note this library has some specific requirements for JAX version. Specifically, to use the v1 models (including GPT-J 6B), jax==0.2.12 is required. This in turn depends on jaxlib==0.1.68. If this is not done, you will get cryptic xmap errors

However, to use the v2 model code (no publicly released weights), the newest JAX version can be used.

Citation

To cite this repository:

@misc{mesh-transformer-jax,
  author = {Wang, Ben},
  title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
  howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
  year = 2021,
  month = May
}

To cite the weights of GPT-J-6B:

@misc{gpt-j,
  author = {Wang, Ben and Komatsuzaki, Aran},
  title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
  howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
  year = 2021,
  month = May
}

If you use this repository or any of the pretrained weights to do something cool, we would love to hear about it. Feel free to open a github issue or reach out over email (in profile).

TODO

  • disentangle heads and shards
  • test/benchmark on TPU
  • implement gradient checkpointing
  • fix initialization
  • mixed precision
  • deal with preemptible TPUs
  • test and validate generation
  • shard activations instead of replicating for memory efficiency (in v2)
  • support ZeRO style sharding (in v2)
Owner
Ben Wang
Ben Wang
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022