An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Overview

BERTify

This is an easy-to-use python module that helps you to extract the BERT embeddings for a large text dataset efficiently. It is intended to be used for Bengali and English texts.

Specially, optimized for usability in limited computational setups (i.e. free colab/kaggle GPUs). Extracting embeddings for IMDB dataset (a list of 25000 texts) took less than ~28 mins. on Colab's GPU. (Haven't perform any hardcore benchmark, so take these numbers with a grain of salt).

Requirements

  • numpy
  • torch
  • tqdm
  • transformers

Quick Installation

$ pip install git+https://github.com/khalidsaifullaah/BERTify

Usage

num. of texts, 4096 -> embedding dim.) # Example 2: English Embedding Extraction en_bertify = BERTify( lang="en", last_four_layers_embedding=True ) # bn_bertify.batch_size = 96 texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."] en_embeddings = en_bertify.embedding(texts) # shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.) ">
from bertify import BERTify

# Example 1: Bengali Embedding Extraction
bn_bertify = BERTify(
    lang="bn",  # language of your text.
    last_four_layers_embedding=True  # to get richer embeddings.
)

# By default, `batch_size` is set to 64. Set `batch_size` higher for making things even faster but higher value than 96 may throw `CUDA out of memory` on Colab's GPU, so try at your own risk.

# bn_bertify.batch_size = 96

# A list of texts that we want the embedding for, can be one or many. (You can turn your whole dataset into a list of texts and pass it into the method for faster embedding extraction)
texts = ["বিখ্যাত হওয়ার প্রথম পদক্ষেপ", "জীবনে সবচেয়ে মূল্যবান জিনিস হচ্ছে", "বেশিরভাগ মানুষের পছন্দের জিনিস হচ্ছে"]

bn_embeddings = bn_bertify.embedding(texts)   # returns numpy matrix 
# shape of the returned matrix in this example 3x4096 (3 -> num. of texts, 4096 -> embedding dim.)




# Example 2: English Embedding Extraction
en_bertify = BERTify(
    lang="en",
    last_four_layers_embedding=True
)

# bn_bertify.batch_size = 96

texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."]
en_embeddings = en_bertify.embedding(texts) 
# shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.)

Tips

  • Try passing all your text data through the .embedding() function at once by turning it into a list of texts.
  • For faster inference, make sure you're using your colab/kaggle GPU while making the .embedding() call
  • Try increasing the batch_size to make it even faster, by default we're using 64 (to be on the safe side) which doesn't throw any CUDA out of memory but I believe we can go even further. Thanks to Alex, from his empirical findings, it seems like it can be pushed until 96. So, before making the .embedding() call, you can do bertify.batch_zie=96 to set a larger batch_zie

Definitions


class BERTify(lang: str = "en", last_four_layers_embedding: bool = False)


A module for extracting embedding from BERT model for Bengali or English text datasets. For 'en' -> English data, it uses bert-base-uncased model embeddings, for 'bn' -> Bengali data, it uses sahajBERT model embeddings.

Parameters:

lang (str, optional): language of your data. Currently supports only 'en' and 'bn'. Defaults to 'en'. last_four_layers_embedding (bool, optional): BERT paper discusses they've reached the best results by concatenating the output of the last four layers, so if this argument is set to True, your embedding vector would be (for bert-base model for example) 4*768=3072 dimensional, otherwise it'd be 768 dimensional. Defaults to False.


def BERTify.embedding(texts: List[str])


The embedding function, that takes a list of texts, feed them through the model and returns a list of embeddings.

Parameters:

texts (List[str]): A list of texts, that you want to extract embedding for (e.g. ["This movie was a total waste of time.", "Whoa! Loved this movie, totally loved all the characters"])

Returns:

np.ndarray: A numpy matrix of shape num_of_texts x embedding_dimension

License

MIT License.

Owner
Khalid Saifullah
love to learn new things.
Khalid Saifullah
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022